Library Asm

Abstract syntax and semantics for PowerPC assembly language

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Locations.
Require Stacklayout.
Require Conventions.

Abstract syntax


Integer registers, floating-point registers.

Inductive ireg: Type :=
  | GPR0: ireg | GPR1: ireg | GPR2: ireg | GPR3: ireg
  | GPR4: ireg | GPR5: ireg | GPR6: ireg | GPR7: ireg
  | GPR8: ireg | GPR9: ireg | GPR10: ireg | GPR11: ireg
  | GPR12: ireg | GPR13: ireg | GPR14: ireg | GPR15: ireg
  | GPR16: ireg | GPR17: ireg | GPR18: ireg | GPR19: ireg
  | GPR20: ireg | GPR21: ireg | GPR22: ireg | GPR23: ireg
  | GPR24: ireg | GPR25: ireg | GPR26: ireg | GPR27: ireg
  | GPR28: ireg | GPR29: ireg | GPR30: ireg | GPR31: ireg.

Inductive freg: Type :=
  | FPR0: freg | FPR1: freg | FPR2: freg | FPR3: freg
  | FPR4: freg | FPR5: freg | FPR6: freg | FPR7: freg
  | FPR8: freg | FPR9: freg | FPR10: freg | FPR11: freg
  | FPR12: freg | FPR13: freg | FPR14: freg | FPR15: freg
  | FPR16: freg | FPR17: freg | FPR18: freg | FPR19: freg
  | FPR20: freg | FPR21: freg | FPR22: freg | FPR23: freg
  | FPR24: freg | FPR25: freg | FPR26: freg | FPR27: freg
  | FPR28: freg | FPR29: freg | FPR30: freg | FPR31: freg.

Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}.


Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.


Symbolic constants. Immediate operands to an arithmetic instruction or an indexed memory access can be either integer literals, or the low or high 16 bits of a symbolic reference (the address of a symbol plus a displacement), or a 16-bit offset from the small data area register. These symbolic references are resolved later by the linker.

Inductive constant: Type :=
  | Cint: int -> constant
  | Csymbol_low: ident -> int -> constant
  | Csymbol_high: ident -> int -> constant
  | Csymbol_sda: ident -> int -> constant.

A note on constants: while immediate operands to PowerPC instructions must be representable in 16 bits (with sign extension or left shift by 16 positions for some instructions), we do not attempt to capture these restrictions in the abstract syntax nor in the semantics. The assembler will emit an error if immediate operands exceed the representable range. Of course, our PPC generator (file Asmgen) is careful to respect this range.

Bits in the condition register. We are only interested in the first 4 bits.

Inductive crbit: Type :=
  | CRbit_0: crbit
  | CRbit_1: crbit
  | CRbit_2: crbit
  | CRbit_3: crbit.

The instruction set. Most instructions correspond exactly to actual instructions of the PowerPC processor. See the PowerPC reference manuals for more details. Some instructions, described below, are pseudo-instructions: they expand to canned instruction sequences during the printing of the assembly code.

Definition label := positive.

Inductive instruction : Type :=
  | Padd: ireg -> ireg -> ireg -> instruction
integer addition
  | Paddi: ireg -> ireg -> constant -> instruction
add immediate
  | Paddis: ireg -> ireg -> constant -> instruction
add immediate high
  | Paddze: ireg -> ireg -> instruction
add Carry bit
  | Pallocframe: Z -> Z -> int -> instruction
allocate new stack frame
  | Pand_: ireg -> ireg -> ireg -> instruction
bitwise and
  | Pandc: ireg -> ireg -> ireg -> instruction
bitwise and-complement
  | Pandi_: ireg -> ireg -> constant -> instruction
and immediate and set conditions
  | Pandis_: ireg -> ireg -> constant -> instruction
and immediate high and set conditions
  | Pb: label -> instruction
unconditional branch
  | Pbctr: instruction
branch to contents of register CTR
  | Pbctrl: instruction
branch to contents of CTR and link
  | Pbf: crbit -> label -> instruction
branch if false
  | Pbl: ident -> instruction
branch and link
  | Pbs: ident -> instruction
branch to symbol
  | Pblr: instruction
branch to contents of register LR
  | Pbt: crbit -> label -> instruction
branch if true
  | Pbtbl: ireg -> list label -> instruction
N-way branch through a jump table
  | Pcmplw: ireg -> ireg -> instruction
unsigned integer comparison
  | Pcmplwi: ireg -> constant -> instruction
same, with immediate argument
  | Pcmpw: ireg -> ireg -> instruction
signed integer comparison
  | Pcmpwi: ireg -> constant -> instruction
same, with immediate argument
  | Pcror: crbit -> crbit -> crbit -> instruction
or between condition bits
  | Pdivw: ireg -> ireg -> ireg -> instruction
signed division
  | Pdivwu: ireg -> ireg -> ireg -> instruction
unsigned division
  | Peqv: ireg -> ireg -> ireg -> instruction
bitwise not-xor
  | Pextsb: ireg -> ireg -> instruction
8-bit sign extension
  | Pextsh: ireg -> ireg -> instruction
16-bit sign extension
  | Pfreeframe: int -> instruction
deallocate stack frame and restore previous frame
  | Pfabs: freg -> freg -> instruction
float absolute value
  | Pfadd: freg -> freg -> freg -> instruction
float addition
  | Pfcmpu: freg -> freg -> instruction
float comparison
  | Pfcti: ireg -> freg -> instruction
float-to-signed-int conversion
  | Pfctiu: ireg -> freg -> instruction
float-to-unsigned-int conversion
  | Pfdiv: freg -> freg -> freg -> instruction
float division
  | Pfmadd: freg -> freg -> freg -> freg -> instruction
float multiply-add
  | Pfmr: freg -> freg -> instruction
float move
  | Pfmsub: freg -> freg -> freg -> freg -> instruction
float multiply-sub
  | Pfmul: freg -> freg -> freg -> instruction
float multiply
  | Pfneg: freg -> freg -> instruction
float negation
  | Pfrsp: freg -> freg -> instruction
float round to single precision
  | Pfsub: freg -> freg -> freg -> instruction
float subtraction
  | Pictf: freg -> ireg -> instruction
int-to-float conversion
  | Piuctf: freg -> ireg -> instruction
unsigned int-to-float conversion
  | Plbz: ireg -> constant -> ireg -> instruction
load 8-bit unsigned int
  | Plbzx: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Plfd: freg -> constant -> ireg -> instruction
load 64-bit float
  | Plfdx: freg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Plfs: freg -> constant -> ireg -> instruction
load 32-bit float
  | Plfsx: freg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Plha: ireg -> constant -> ireg -> instruction
load 16-bit signed int
  | Plhax: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Plhz: ireg -> constant -> ireg -> instruction
load 16-bit unsigned int
  | Plhzx: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Plfi: freg -> float -> instruction
load float constant
  | Plwz: ireg -> constant -> ireg -> instruction
load 32-bit int
  | Plwzx: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Pmfcrbit: ireg -> crbit -> instruction
move condition bit to reg
  | Pmflr: ireg -> instruction
move LR to reg
  | Pmr: ireg -> ireg -> instruction
integer move
  | Pmtctr: ireg -> instruction
move ireg to CTR
  | Pmtlr: ireg -> instruction
move ireg to LR
  | Pmulli: ireg -> ireg -> constant -> instruction
integer multiply immediate
  | Pmullw: ireg -> ireg -> ireg -> instruction
integer multiply
  | Pnand: ireg -> ireg -> ireg -> instruction
bitwise not-and
  | Pnor: ireg -> ireg -> ireg -> instruction
bitwise not-or
  | Por: ireg -> ireg -> ireg -> instruction
bitwise or
  | Porc: ireg -> ireg -> ireg -> instruction
bitwise or-complement
  | Pori: ireg -> ireg -> constant -> instruction
or with immediate
  | Poris: ireg -> ireg -> constant -> instruction
or with immediate high
  | Prlwinm: ireg -> ireg -> int -> int -> instruction
rotate and mask
  | Pslw: ireg -> ireg -> ireg -> instruction
shift left
  | Psraw: ireg -> ireg -> ireg -> instruction
shift right signed
  | Psrawi: ireg -> ireg -> int -> instruction
shift right signed immediate
  | Psrw: ireg -> ireg -> ireg -> instruction
shift right unsigned
  | Pstb: ireg -> constant -> ireg -> instruction
store 8-bit int
  | Pstbx: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Pstfd: freg -> constant -> ireg -> instruction
store 64-bit float
  | Pstfdx: freg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Pstfs: freg -> constant -> ireg -> instruction
store 32-bit float
  | Pstfsx: freg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Psth: ireg -> constant -> ireg -> instruction
store 16-bit int
  | Psthx: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Pstw: ireg -> constant -> ireg -> instruction
store 32-bit int
  | Pstwx: ireg -> ireg -> ireg -> instruction
same, with 2 index regs
  | Psubfc: ireg -> ireg -> ireg -> instruction
reversed integer subtraction
  | Psubfic: ireg -> ireg -> constant -> instruction
integer subtraction from immediate
  | Pxor: ireg -> ireg -> ireg -> instruction
bitwise xor
  | Pxori: ireg -> ireg -> constant -> instruction
bitwise xor with immediate
  | Pxoris: ireg -> ireg -> constant -> instruction
bitwise xor with immediate high
  | Plabel: label -> instruction.
define a code label

The pseudo-instructions are the following:

  • Plabel: define a code label at the current program point
  • Plfi: load a floating-point constant in a float register. Expands to a float load lfd from an address in the constant data section initialized with the floating-point constant:
            addis   r12, 0, ha16(lbl)
            lfd     rdst, lo16(lbl)(r12)
            .const_data
    lbl:    .double floatcst
            .text
    


Initialized data in the constant data section are not modeled here, which is why we use a pseudo-instruction for this purpose.
  • Pfcti: convert a float to a signed integer. This requires a transfer via memory of a 32-bit integer from a float register to an int register, which our memory model cannot express. Expands to:
            fctiwz  f13, rsrc
            stfdu   f13, -8(r1)
            lwz     rdst, 4(r1)
            addi    r1, r1, 8
    


  • Pfctiu: convert a float to an unsigned integer. The PowerPC way to do this is to compare the argument against the floating-point constant 2^31, subtract 2^31 if bigger, then convert to a signed integer as above, then add back 2^31 if needed. Expands to:
            addis   r12, 0, ha16(lbl1)
            lfd     f13, lo16(lbl1)(r12)
            fcmpu   cr7, rsrc, f13
            cror    30, 29, 30
            beq     cr7, lbl2
            fctiwz  f13, rsrc
            stfdu   f13, -8(r1)
            lwz     rdst, 4(r1)
            b       lbl3
    lbl2:   fsub    f13, rsrc, f13
            fctiwz  f13, f13
            stfdu   f13, -8(r1)
            lwz     rdst, 4(r1)
            addis   rdst, rdst, 0x8000
    lbl3:   addi    r1, r1, 8
            .const_data
    lbl1:   .long   0x41e00000, 0x00000000    # 2^31 in double precision
            .text
    


  • Pictf: convert a signed integer to a float. This requires complicated bit-level manipulations of IEEE floats through mixed float and integer arithmetic over a memory word, which our memory model and axiomatization of floats cannot express. Expands to:
            addis   r12, 0, 0x4330
            stwu    r12, -8(r1)
            addis   r12, rsrc, 0x8000
            stw     r12, 4(r1)
            addis   r12, 0, ha16(lbl)
            lfd     f13, lo16(lbl)(r12)
            lfd     rdst, 0(r1)
            addi    r1, r1, 8
            fsub    rdst, rdst, f13
            .const_data
    lbl:    .long   0x43300000, 0x80000000
            .text
    


(Don't worry if you do not understand this instruction sequence: intimate knowledge of IEEE float arithmetic is necessary.)
  • Piuctf: convert an unsigned integer to a float. The expansion is close to that Pictf, and equally obscure.
            addis   r12, 0, 0x4330
            stwu    r12, -8(r1)
            stw     rsrc, 4(r1)
            addis   r12, 0, ha16(lbl)
            lfd     f13, lo16(lbl)(r12)
            lfd     rdst, 0(r1)
            addi    r1, r1, 8
            fsub    rdst, rdst, f13
            .const_data
    lbl:    .long   0x43300000, 0x00000000
            .text
    


  • Pallocframe lo hi ofs: in the formal semantics, this pseudo-instruction allocates a memory block with bounds lo and hi, stores the value of register r1 (the stack pointer, by convention) at offset ofs in this block, and sets r1 to a pointer to the bottom of this block. In the printed PowerPC assembly code, this allocation is just a store-decrement of register r1, assuming that ofs = 0:
            stwu    r1, (lo - hi)(r1)
    


This cannot be expressed in our memory model, which does not reflect the fact that stack frames are adjacent and allocated/freed following a stack discipline.
  • Pfreeframe ofs: in the formal semantics, this pseudo-instruction reads the word at offset ofs in the block pointed by r1 (the stack pointer), frees this block, and sets r1 to the value of the word at offset ofs. In the printed PowerPC assembly code, this freeing is just a load of register r1 relative to r1 itself:
            lwz     r1, ofs(r1)
    


Again, our memory model cannot comprehend that this operation frees (logically) the current stack frame.
  • Pbtbl reg table: this is a N-way branch, implemented via a jump table as follows:
            addis   r12, reg, ha16(lbl)
            lwz     r12, lo16(lbl)(r12)
            mtctr   r12
            bctr    r12
    lbl:    .long   table[0], table[1], ...
    


Note that reg contains 4 times the index of the desired table entry.

Definition code := list instruction.
Definition fundef := AST.fundef code.
Definition program := AST.program fundef unit.

Operational semantics


The PowerPC has a great many registers, some general-purpose, some very specific. We model only the following registers:

Inductive preg: Type :=
  | IR: ireg -> preg
integer registers
  | FR: freg -> preg
float registers
  | PC: preg
program counter
  | LR: preg
link register (return address)
  | CTR: preg
count register, used for some branches
  | CARRY: preg
carry bit of the status register
  | CR0_0: preg
bit 0 of the condition register
  | CR0_1: preg
bit 1 of the condition register
  | CR0_2: preg
bit 2 of the condition register
  | CR0_3: preg.
bit 3 of the condition register

Coercion IR: ireg >-> preg.
Coercion FR: freg >-> preg.

Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}.


Module PregEq.
  Definition t := preg.
  Definition eq := preg_eq.
End PregEq.

Module Pregmap := EMap(PregEq).

The semantics operates over a single mapping from registers (type preg) to values. We maintain (but do not enforce) the convention that integer registers are mapped to values of type Tint, float registers to values of type Tfloat, and boolean registers (CARRY, CR0_0, etc) to either Vzero or Vone.

Definition regset := Pregmap.t val.
Definition genv := Genv.t fundef.

Notation "a # b" := (a b) (at level 1, only parsing).
Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level).

Section RELSEM.

Looking up instructions in a code sequence by position.

Fixpoint find_instr (pos: Z) (c: code) {struct c} : option instruction :=
  match c with
  | nil => None
  | i :: il => if zeq pos 0 then Some i else find_instr (pos - 1) il
  end.

Position corresponding to a label

Definition is_label (lbl: label) (instr: instruction) : bool :=
  match instr with
  | Plabel lbl' => if peq lbl lbl' then true else false
  | _ => false
  end.

Lemma is_label_correct:
  forall lbl instr,
  if is_label lbl instr then instr = Plabel lbl else instr <> Plabel lbl.


Fixpoint label_pos (lbl: label) (pos: Z) (c: code) {struct c} : option Z :=
  match c with
  | nil => None
  | instr :: c' =>
      if is_label lbl instr then Some (pos + 1) else label_pos lbl (pos + 1) c'
  end.

Some PowerPC instructions treat register GPR0 as the integer literal 0 when that register is used in argument position.

Definition gpr_or_zero (rs: regset) (r: ireg) :=
  if ireg_eq r GPR0 then Vzero else rs#r.

Variable ge: genv.

Definition symbol_offset (id: ident) (ofs: int) : val :=
  match Genv.find_symbol ge id with
  | Some b => Vptr b ofs
  | None => Vundef
  end.

The two functions below axiomatize how the linker processes symbolic references symbol + offset and splits their actual values into two 16-bit halves.

Parameter low_half: val -> val.
Parameter high_half: val -> val.

The fundamental property of these operations is that, when applied to the address of a symbol, their results can be recombined by addition, rebuilding the original address.

Axiom low_high_half:
  forall id ofs,
  Val.add (low_half (symbol_offset id ofs)) (high_half (symbol_offset id ofs))
  = symbol_offset id ofs.

The other axioms we take is that the results of the low_half and high_half functions are of type Tint, i.e. either integers, pointers or undefined values.

Axiom low_half_type:
  forall v, Val.has_type (low_half v) Tint.
Axiom high_half_type:
  forall v, Val.has_type (high_half v) Tint.

We also axiomatize the small data area. For simplicity, we claim that small data symbols can be accessed by absolute 16-bit offsets, that is, relative to GPR0. In reality, the linker rewrites the object code, transforming symb@sdarx(r0) addressings into offset(rN) addressings, where rN is the reserved register pointing to the base of the small data area containing symbol symb. We leave this transformation up to the linker.

Parameter symbol_is_small_data: ident -> int -> bool.
Parameter small_data_area_offset: genv -> ident -> int -> val.

Axiom small_data_area_addressing:
  forall id ofs,
  symbol_is_small_data id ofs = true ->
  small_data_area_offset ge id ofs = symbol_offset id ofs.

Armed with the low_half and high_half functions, we can define the evaluation of a symbolic constant. Note that for const_high, integer constants are shifted left by 16 bits, but not symbol addresses: we assume (as in the low_high_half axioms above) that the results of high_half are already shifted (their 16 low bits are equal to 0).

Definition const_low (c: constant) :=
  match c with
  | Cint n => Vint n
  | Csymbol_low id ofs => low_half (symbol_offset id ofs)
  | Csymbol_high id ofs => Vundef
  | Csymbol_sda id ofs => small_data_area_offset ge id ofs
  end.

Definition const_high (c: constant) :=
  match c with
  | Cint n => Vint (Int.shl n (Int.repr 16))
  | Csymbol_low id ofs => Vundef
  | Csymbol_high id ofs => high_half (symbol_offset id ofs)
  | Csymbol_sda id ofs => Vundef
  end.

The semantics is purely small-step and defined as a function from the current state (a register set + a memory state) to either OK rs' m' where rs' and m' are the updated register set and memory state after execution of the instruction at rs#PC, or Error if the processor is stuck.

Inductive outcome: Type :=
  | OK: regset -> mem -> outcome
  | Error: outcome.

Manipulations over the PC register: continuing with the next instruction (nextinstr) or branching to a label (goto_label).

Definition nextinstr (rs: regset) :=
  rs#PC <- (Val.add rs#PC Vone).

Definition goto_label (c: code) (lbl: label) (rs: regset) (m: mem) :=
  match label_pos lbl 0 c with
  | None => Error
  | Some pos =>
      match rs#PC with
      | Vptr b ofs => OK (rs#PC <- (Vptr b (Int.repr pos))) m
      | _ => Error
    end
  end.

Auxiliaries for memory accesses, in two forms: one operand (plus constant offset) or two operands.

Definition load1 (chunk: memory_chunk) (rd: preg)
                 (cst: constant) (r1: ireg) (rs: regset) (m: mem) :=
  match Mem.loadv chunk m (Val.add (gpr_or_zero rs r1) (const_low cst)) with
  | None => Error
  | Some v => OK (nextinstr (rs#rd <- v)) m
  end.

Definition load2 (chunk: memory_chunk) (rd: preg) (r1 r2: ireg)
                 (rs: regset) (m: mem) :=
  match Mem.loadv chunk m (Val.add rs#r1 rs#r2) with
  | None => Error
  | Some v => OK (nextinstr (rs#rd <- v)) m
  end.

Definition store1 (chunk: memory_chunk) (r: preg)
                  (cst: constant) (r1: ireg) (rs: regset) (m: mem) :=
  match Mem.storev chunk m (Val.add (gpr_or_zero rs r1) (const_low cst)) (rs#r) with
  | None => Error
  | Some m' => OK (nextinstr rs) m'
  end.

Definition store2 (chunk: memory_chunk) (r: preg) (r1 r2: ireg)
                  (rs: regset) (m: mem) :=
  match Mem.storev chunk m (Val.add rs#r1 rs#r2) (rs#r) with
  | None => Error
  | Some m' => OK (nextinstr rs) m'
  end.

Operations over condition bits.

Definition reg_of_crbit (bit: crbit) :=
  match bit with
  | CRbit_0 => CR0_0
  | CRbit_1 => CR0_1
  | CRbit_2 => CR0_2
  | CRbit_3 => CR0_3
  end.

Definition compare_sint (rs: regset) (v1 v2: val) :=
  rs#CR0_0 <- (Val.cmp Clt v1 v2)
    #CR0_1 <- (Val.cmp Cgt v1 v2)
    #CR0_2 <- (Val.cmp Ceq v1 v2)
    #CR0_3 <- Vundef.

Definition compare_uint (rs: regset) (v1 v2: val) :=
  rs#CR0_0 <- (Val.cmpu Clt v1 v2)
    #CR0_1 <- (Val.cmpu Cgt v1 v2)
    #CR0_2 <- (Val.cmpu Ceq v1 v2)
    #CR0_3 <- Vundef.

Definition compare_float (rs: regset) (v1 v2: val) :=
  rs#CR0_0 <- (Val.cmpf Clt v1 v2)
    #CR0_1 <- (Val.cmpf Cgt v1 v2)
    #CR0_2 <- (Val.cmpf Ceq v1 v2)
    #CR0_3 <- Vundef.

Definition val_cond_reg (rs: regset) :=
  Val.or (Val.shl rs#CR0_0 (Vint (Int.repr 31)))
  (Val.or (Val.shl rs#CR0_1 (Vint (Int.repr 30)))
   (Val.or (Val.shl rs#CR0_2 (Vint (Int.repr 29)))
            (Val.shl rs#CR0_3 (Vint (Int.repr 28))))).

Execution of a single instruction i in initial state rs and m. Return updated state. For instructions that correspond to actual PowerPC instructions, the cases are straightforward transliterations of the informal descriptions given in the PowerPC reference manuals. For pseudo-instructions, refer to the informal descriptions given above. Note that we set to Vundef the registers used as temporaries by the expansions of the pseudo-instructions, so that the PPC code we generate cannot use those registers to hold values that must survive the execution of the pseudo-instruction.

Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome :=
  match i with
  | Padd rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.add rs#r1 rs#r2))) m
  | Paddi rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_low cst)))) m
  | Paddis rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.add (gpr_or_zero rs r1) (const_high cst)))) m
  | Paddze rd r1 =>
      OK (nextinstr (rs#rd <- (Val.add rs#r1 rs#CARRY))) m
  | Pallocframe lo hi ofs =>
      let (m1, stk) := Mem.alloc m lo hi in
      let sp := Vptr stk (Int.repr lo) in
      match Mem.storev Mint32 m1 (Val.add sp (Vint ofs)) rs#GPR1 with
      | None => Error
      | Some m2 => OK (nextinstr (rs#GPR1 <- sp #GPR12 <- Vundef)) m2
      end
  | Pand_ rd r1 r2 =>
      let v := Val.and rs#r1 rs#r2 in
      OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
  | Pandc rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.and rs#r1 (Val.notint rs#r2)))) m
  | Pandi_ rd r1 cst =>
      let v := Val.and rs#r1 (const_low cst) in
      OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
  | Pandis_ rd r1 cst =>
      let v := Val.and rs#r1 (const_high cst) in
      OK (nextinstr (compare_sint (rs#rd <- v) v Vzero)) m
  | Pb lbl =>
      goto_label c lbl rs m
  | Pbctr =>
      OK (rs#PC <- (rs#CTR)) m
  | Pbctrl =>
      OK (rs#LR <- (Val.add rs#PC Vone) #PC <- (rs#CTR)) m
  | Pbf bit lbl =>
      match rs#(reg_of_crbit bit) with
      | Vint n => if Int.eq n Int.zero then goto_label c lbl rs m else OK (nextinstr rs) m
      | _ => Error
      end
  | Pbl ident =>
      OK (rs#LR <- (Val.add rs#PC Vone) #PC <- (symbol_offset ident Int.zero)) m
  | Pbs ident =>
      OK (rs#PC <- (symbol_offset ident Int.zero)) m
  | Pblr =>
      OK (rs#PC <- (rs#LR)) m
  | Pbt bit lbl =>
      match rs#(reg_of_crbit bit) with
      | Vint n => if Int.eq n Int.zero then OK (nextinstr rs) m else goto_label c lbl rs m
      | _ => Error
      end
  | Pbtbl r tbl =>
      match rs#r with
      | Vint n =>
          let pos := Int.signed n in
          if zeq (Zmod pos 4) 0 then
            match list_nth_z tbl (pos / 4) with
            | None => Error
            | Some lbl => goto_label c lbl (rs #GPR12 <- Vundef #CTR <- Vundef) m
            end
          else Error
      | _ => Error
      end
  | Pcmplw r1 r2 =>
      OK (nextinstr (compare_uint rs rs#r1 rs#r2)) m
  | Pcmplwi r1 cst =>
      OK (nextinstr (compare_uint rs rs#r1 (const_low cst))) m
  | Pcmpw r1 r2 =>
      OK (nextinstr (compare_sint rs rs#r1 rs#r2)) m
  | Pcmpwi r1 cst =>
      OK (nextinstr (compare_sint rs rs#r1 (const_low cst))) m
  | Pcror bd b1 b2 =>
      OK (nextinstr (rs#(reg_of_crbit bd) <- (Val.or rs#(reg_of_crbit b1) rs#(reg_of_crbit b2)))) m
  | Pdivw rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.divs rs#r1 rs#r2))) m
  | Pdivwu rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.divu rs#r1 rs#r2))) m
  | Peqv rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.notint (Val.xor rs#r1 rs#r2)))) m
  | Pextsb rd r1 =>
      OK (nextinstr (rs#rd <- (Val.sign_ext 8 rs#r1))) m
  | Pextsh rd r1 =>
      OK (nextinstr (rs#rd <- (Val.sign_ext 16 rs#r1))) m
  | Pfreeframe ofs =>
      match Mem.loadv Mint32 m (Val.add rs#GPR1 (Vint ofs)) with
      | None => Error
      | Some v =>
          match rs#GPR1 with
          | Vptr stk ofs => OK (nextinstr (rs#GPR1 <- v)) (Mem.free m stk)
          | _ => Error
          end
      end
  | Pfabs rd r1 =>
      OK (nextinstr (rs#rd <- (Val.absf rs#r1))) m
  | Pfadd rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.addf rs#r1 rs#r2))) m
  | Pfcmpu r1 r2 =>
      OK (nextinstr (compare_float rs rs#r1 rs#r2)) m
  | Pfcti rd r1 =>
      OK (nextinstr (rs#rd <- (Val.intoffloat rs#r1) #FPR13 <- Vundef)) m
  | Pfctiu rd r1 =>
      OK (nextinstr (rs#rd <- (Val.intuoffloat rs#r1) #FPR13 <- Vundef)) m
  | Pfdiv rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.divf rs#r1 rs#r2))) m
  | Pfmadd rd r1 r2 r3 =>
      OK (nextinstr (rs#rd <- (Val.addf (Val.mulf rs#r1 rs#r2) rs#r3))) m
  | Pfmr rd r1 =>
      OK (nextinstr (rs#rd <- (rs#r1))) m
  | Pfmsub rd r1 r2 r3 =>
      OK (nextinstr (rs#rd <- (Val.subf (Val.mulf rs#r1 rs#r2) rs#r3))) m
  | Pfmul rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.mulf rs#r1 rs#r2))) m
  | Pfneg rd r1 =>
      OK (nextinstr (rs#rd <- (Val.negf rs#r1))) m
  | Pfrsp rd r1 =>
      OK (nextinstr (rs#rd <- (Val.singleoffloat rs#r1))) m
  | Pfsub rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.subf rs#r1 rs#r2))) m
  | Pictf rd r1 =>
      OK (nextinstr (rs#rd <- (Val.floatofint rs#r1) #GPR12 <- Vundef #FPR13 <- Vundef)) m
  | Piuctf rd r1 =>
      OK (nextinstr (rs#rd <- (Val.floatofintu rs#r1) #GPR12 <- Vundef #FPR13 <- Vundef)) m
  | Plbz rd cst r1 =>
      load1 Mint8unsigned rd cst r1 rs m
  | Plbzx rd r1 r2 =>
      load2 Mint8unsigned rd r1 r2 rs m
  | Plfd rd cst r1 =>
      load1 Mfloat64 rd cst r1 rs m
  | Plfdx rd r1 r2 =>
      load2 Mfloat64 rd r1 r2 rs m
  | Plfs rd cst r1 =>
      load1 Mfloat32 rd cst r1 rs m
  | Plfsx rd r1 r2 =>
      load2 Mfloat32 rd r1 r2 rs m
  | Plha rd cst r1 =>
      load1 Mint16signed rd cst r1 rs m
  | Plhax rd r1 r2 =>
      load2 Mint16signed rd r1 r2 rs m
  | Plhz rd cst r1 =>
      load1 Mint16unsigned rd cst r1 rs m
  | Plhzx rd r1 r2 =>
      load2 Mint16unsigned rd r1 r2 rs m
  | Plfi rd f =>
      OK (nextinstr (rs#rd <- (Vfloat f) #GPR12 <- Vundef)) m
  | Plwz rd cst r1 =>
      load1 Mint32 rd cst r1 rs m
  | Plwzx rd r1 r2 =>
      load2 Mint32 rd r1 r2 rs m
  | Pmfcrbit rd bit =>
      OK (nextinstr (rs#rd <- (rs#(reg_of_crbit bit)))) m
  | Pmflr rd =>
      OK (nextinstr (rs#rd <- (rs#LR))) m
  | Pmr rd r1 =>
      OK (nextinstr (rs#rd <- (rs#r1))) m
  | Pmtctr r1 =>
      OK (nextinstr (rs#CTR <- (rs#r1))) m
  | Pmtlr r1 =>
      OK (nextinstr (rs#LR <- (rs#r1))) m
  | Pmulli rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.mul rs#r1 (const_low cst)))) m
  | Pmullw rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.mul rs#r1 rs#r2))) m
  | Pnand rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.notint (Val.and rs#r1 rs#r2)))) m
  | Pnor rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.notint (Val.or rs#r1 rs#r2)))) m
  | Por rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.or rs#r1 rs#r2))) m
  | Porc rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.or rs#r1 (Val.notint rs#r2)))) m
  | Pori rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.or rs#r1 (const_low cst)))) m
  | Poris rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.or rs#r1 (const_high cst)))) m
  | Prlwinm rd r1 amount mask =>
      OK (nextinstr (rs#rd <- (Val.rolm rs#r1 amount mask))) m
  | Pslw rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.shl rs#r1 rs#r2))) m
  | Psraw rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.shr rs#r1 rs#r2) #CARRY <- (Val.shr_carry rs#r1 rs#r2))) m
  | Psrawi rd r1 n =>
      OK (nextinstr (rs#rd <- (Val.shr rs#r1 (Vint n)) #CARRY <- (Val.shr_carry rs#r1 (Vint n)))) m
  | Psrw rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.shru rs#r1 rs#r2))) m
  | Pstb rd cst r1 =>
      store1 Mint8unsigned rd cst r1 rs m
  | Pstbx rd r1 r2 =>
      store2 Mint8unsigned rd r1 r2 rs m
  | Pstfd rd cst r1 =>
      store1 Mfloat64 rd cst r1 rs m
  | Pstfdx rd r1 r2 =>
      store2 Mfloat64 rd r1 r2 rs m
  | Pstfs rd cst r1 =>
      store1 Mfloat32 rd cst r1 (rs#FPR13 <- Vundef) m
  | Pstfsx rd r1 r2 =>
      store2 Mfloat32 rd r1 r2 (rs#FPR13 <- Vundef) m
  | Psth rd cst r1 =>
      store1 Mint16unsigned rd cst r1 rs m
  | Psthx rd r1 r2 =>
      store2 Mint16unsigned rd r1 r2 rs m
  | Pstw rd cst r1 =>
      store1 Mint32 rd cst r1 rs m
  | Pstwx rd r1 r2 =>
      store2 Mint32 rd r1 r2 rs m
  | Psubfc rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.sub rs#r2 rs#r1) #CARRY <- Vundef)) m
  | Psubfic rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.sub (const_low cst) rs#r1) #CARRY <- Vundef)) m
  | Pxor rd r1 r2 =>
      OK (nextinstr (rs#rd <- (Val.xor rs#r1 rs#r2))) m
  | Pxori rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.xor rs#r1 (const_low cst)))) m
  | Pxoris rd r1 cst =>
      OK (nextinstr (rs#rd <- (Val.xor rs#r1 (const_high cst)))) m
  | Plabel lbl =>
      OK (nextinstr rs) m
  end.

Translation of the LTL/Linear/Mach view of machine registers to the PPC view. PPC has two different types for registers (integer and float) while LTL et al have only one. The ireg_of and freg_of are therefore partial in principle. To keep things simpler, we make them return nonsensical results when applied to a LTL register of the wrong type. The proof in Asmgenproof will show that this never happens.

Note that no LTL register maps to GPR12 nor FPR13. These two registers are reserved as temporaries, to be used by the generated PPC code.

Definition ireg_of (r: mreg) : ireg :=
  match r with
  | R3 => GPR3 | R4 => GPR4 | R5 => GPR5 | R6 => GPR6
  | R7 => GPR7 | R8 => GPR8 | R9 => GPR9 | R10 => GPR10
  | R14 => GPR14 | R15 => GPR15 | R16 => GPR16
  | R17 => GPR17 | R18 => GPR18 | R19 => GPR19 | R20 => GPR20
  | R21 => GPR21 | R22 => GPR22 | R23 => GPR23 | R24 => GPR24
  | R25 => GPR25 | R26 => GPR26 | R27 => GPR27 | R28 => GPR28
  | R29 => GPR29 | R30 => GPR30 | R31 => GPR31
  | IT1 => GPR11 | IT2 => GPR0
  | _ => GPR0   end.

Definition freg_of (r: mreg) : freg :=
  match r with
  | F1 => FPR1 | F2 => FPR2 | F3 => FPR3 | F4 => FPR4
  | F5 => FPR5 | F6 => FPR6 | F7 => FPR7 | F8 => FPR8
  | F9 => FPR9 | F10 => FPR10 | F14 => FPR14 | F15 => FPR15
  | F16 => FPR16 | F17 => FPR17 | F18 => FPR18 | F19 => FPR19
  | F20 => FPR20 | F21 => FPR21 | F22 => FPR22 | F23 => FPR23
  | F24 => FPR24 | F25 => FPR25 | F26 => FPR26 | F27 => FPR27
  | F28 => FPR28 | F29 => FPR29 | F30 => FPR30 | F31 => FPR31
  | FT1 => FPR0 | FT2 => FPR11 | FT3 => FPR12
  | _ => FPR0   end.

Definition preg_of (r: mreg) :=
  match mreg_type r with
  | Tint => IR (ireg_of r)
  | Tfloat => FR (freg_of r)
  end.

Extract the values of the arguments of an external call. We exploit the calling conventions from module Conventions, except that we use PPC registers instead of locations.

Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop :=
  | extcall_arg_reg: forall r,
      extcall_arg rs m (R r) (rs (preg_of r))
  | extcall_arg_int_stack: forall ofs bofs v,
      bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
      Mem.loadv Mint32 m (Val.add (rs (IR GPR1)) (Vint (Int.repr bofs))) = Some v ->
      extcall_arg rs m (S (Outgoing ofs Tint)) v
  | extcall_arg_float_stack: forall ofs bofs v,
      bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
      Mem.loadv Mfloat64 m (Val.add (rs (IR GPR1)) (Vint (Int.repr bofs))) = Some v ->
      extcall_arg rs m (S (Outgoing ofs Tfloat)) v.

Inductive extcall_args (rs: regset) (m: mem): list loc -> list val -> Prop :=
  | extcall_args_nil:
      extcall_args rs m nil nil
  | extcall_args_cons: forall l1 ll v1 vl,
      extcall_arg rs m l1 v1 -> extcall_args rs m ll vl ->
      extcall_args rs m (l1 :: ll) (v1 :: vl).

Definition extcall_arguments
    (rs: regset) (m: mem) (sg: signature) (args: list val) : Prop :=
  extcall_args rs m (Conventions.loc_arguments sg) args.

Definition loc_external_result (sg: signature) : preg :=
  preg_of (Conventions.loc_result sg).

Execution of the instruction at rs#PC.

Inductive state: Type :=
  | State: regset -> mem -> state.

Inductive step: state -> trace -> state -> Prop :=
  | exec_step_internal:
      forall b ofs c i rs m rs' m',
      rs PC = Vptr b ofs ->
      Genv.find_funct_ptr ge b = Some (Internal c) ->
      find_instr (Int.unsigned ofs) c = Some i ->
      exec_instr c i rs m = OK rs' m' ->
      step (State rs m) E0 (State rs' m')
  | exec_step_external:
      forall b ef args res rs m t rs',
      rs PC = Vptr b Int.zero ->
      Genv.find_funct_ptr ge b = Some (External ef) ->
      event_match ef args t res ->
      extcall_arguments rs m ef.(ef_sig) args ->
      rs' = (rs#(loc_external_result ef.(ef_sig)) <- res
               #PC <- (rs LR)) ->
      step (State rs m) t (State rs' m).

End RELSEM.

Execution of whole programs.

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro:
      let ge := Genv.globalenv p in
      let m0 := Genv.init_mem p in
      let rs0 :=
        (Pregmap.init Vundef)
        # PC <- (symbol_offset ge p.(prog_main) Int.zero)
        # LR <- Vzero
        # GPR1 <- (Vptr Mem.nullptr Int.zero) in
      initial_state p (State rs0 m0).

Inductive final_state: state -> int -> Prop :=
  | final_state_intro: forall rs m r,
      rs#PC = Vzero ->
      rs#GPR3 = Vint r ->
      final_state (State rs m) r.

Definition exec_program (p: program) (beh: program_behavior) : Prop :=
  program_behaves step (initial_state p) final_state (Genv.globalenv p) beh.