Library Switch

Multi-way branches (``switch'' statements) and their compilation to comparison trees.

Require Import EqNat.
Require Import FMaps.
Require FMapAVL.
Require Import Coqlib.
Require Import Integers.
Require Import Ordered.

Module IntMap := FMapAVL.Make(OrderedInt).
Module IntMapF := FMapFacts.Facts(IntMap).

A multi-way branch is composed of a list of (key, action) pairs, plus a default action.

Definition table : Type := list (int * nat).

Fixpoint switch_target (n: int) (dfl: nat) (cases: table)
                       {struct cases} : nat :=
  match cases with
  | nil => dfl
  | (key, action) :: rem =>
      if Int.eq n key then action else switch_target n dfl rem
  end.

Multi-way branches are translated to comparison trees. Each node of the tree performs either
  • an equality against one of the keys;
  • or a "less than" test against one of the keys;
  • or a computed branch (jump table) against a range of key values.

Inductive comptree : Type :=
  | CTaction: nat -> comptree
  | CTifeq: int -> nat -> comptree -> comptree
  | CTiflt: int -> comptree -> comptree -> comptree
  | CTjumptable: int -> int -> list nat -> comptree -> comptree.

Fixpoint comptree_match (n: int) (t: comptree) {struct t}: option nat :=
  match t with
  | CTaction act => Some act
  | CTifeq key act t' =>
      if Int.eq n key then Some act else comptree_match n t'
  | CTiflt key t1 t2 =>
      if Int.ltu n key then comptree_match n t1 else comptree_match n t2
  | CTjumptable ofs sz tbl t' =>
      if Int.ltu (Int.sub n ofs) sz
      then list_nth_z tbl (Int.signed (Int.sub n ofs))
      else comptree_match n t'
  end.

The translation from a table to a comparison tree is performed by untrusted Caml code (function compile_switch in file RTLgenaux.ml). In Coq, we validate a posteriori the result of this function. In other terms, we now develop and prove correct Coq functions that take a table and a comparison tree, and check that their semantics are equivalent.

Fixpoint split_lt (pivot: int) (cases: table)
                  {struct cases} : table * table :=
  match cases with
  | nil => (nil, nil)
  | (key, act) :: rem =>
      let (l, r) := split_lt pivot rem in
      if Int.ltu key pivot
      then ((key, act) :: l, r)
      else (l, (key, act) :: r)
  end.

Fixpoint split_eq (pivot: int) (cases: table)
                  {struct cases} : option nat * table :=
  match cases with
  | nil => (None, nil)
  | (key, act) :: rem =>
      let (same, others) := split_eq pivot rem in
      if Int.eq key pivot
      then (Some act, others)
      else (same, (key, act) :: others)
  end.

Fixpoint split_between (ofs sz: int) (cases: table)
                       {struct cases} : IntMap.t nat * table :=
  match cases with
  | nil => (IntMap.empty nat, nil)
  | (key, act) :: rem =>
      let (inside, outside) := split_between ofs sz rem in
      if Int.ltu (Int.sub key ofs) sz
      then (IntMap.add key act inside, outside)
      else (inside, (key, act) :: outside)
  end.

Definition refine_low_bound (v lo: Z) :=
  if zeq v lo then lo + 1 else lo.

Definition refine_high_bound (v hi: Z) :=
  if zeq v hi then hi - 1 else hi.

Fixpoint validate_jumptable (cases: IntMap.t nat) (default: nat)
                            (tbl: list nat) (n: int) {struct tbl} : bool :=
  match tbl with
  | nil => true
  | act :: rem =>
      beq_nat act (match IntMap.find n cases with Some a => a | None => default end)
      && validate_jumptable cases default rem (Int.add n Int.one)
  end.

Fixpoint validate (default: nat) (cases: table) (t: comptree)
                  (lo hi: Z) {struct t} : bool :=
  match t with
  | CTaction act =>
      match cases with
      | nil =>
          beq_nat act default
      | (key1, act1) :: _ =>
          zeq (Int.unsigned key1) lo && zeq lo hi && beq_nat act act1
      end
  | CTifeq pivot act t' =>
      match split_eq pivot cases with
      | (None, _) =>
          false
      | (Some act', others) =>
          beq_nat act act'
          && validate default others t'
                      (refine_low_bound (Int.unsigned pivot) lo)
                      (refine_high_bound (Int.unsigned pivot) hi)
      end
  | CTiflt pivot t1 t2 =>
      match split_lt pivot cases with
      | (lcases, rcases) =>
          validate default lcases t1 lo (Int.unsigned pivot - 1)
          && validate default rcases t2 (Int.unsigned pivot) hi
      end
  | CTjumptable ofs sz tbl t' =>
      let tbl_len := list_length_z tbl in
      match split_between ofs sz cases with
      | (inside, outside) =>
          zle (Int.unsigned sz) tbl_len
          && zle tbl_len Int.max_signed
          && validate_jumptable inside default tbl ofs
          && validate default outside t' lo hi
     end
  end.

Definition validate_switch (default: nat) (cases: table) (t: comptree) :=
  validate default cases t 0 Int.max_unsigned.

Correctness proof for validation.

Lemma split_eq_prop:
  forall v default n cases optact cases',
  split_eq n cases = (optact, cases') ->
  switch_target v default cases =
   (if Int.eq v n
    then match optact with Some act => act | None => default end
    else switch_target v default cases').


Lemma split_lt_prop:
  forall v default n cases lcases rcases,
  split_lt n cases = (lcases, rcases) ->
  switch_target v default cases =
    (if Int.ltu v n
     then switch_target v default lcases
     else switch_target v default rcases).


Lemma split_between_prop:
  forall v default ofs sz cases inside outside,
  split_between ofs sz cases = (inside, outside) ->
  switch_target v default cases =
    (if Int.ltu (Int.sub v ofs) sz
     then match IntMap.find v inside with Some a => a | None => default end
     else switch_target v default outside).


Lemma validate_jumptable_correct_rec:
  forall cases default tbl base v,
  validate_jumptable cases default tbl base = true ->
  0 <= Int.signed v < list_length_z tbl -> Int.signed v <= Int.max_signed ->
  list_nth_z tbl (Int.signed v) =
  Some(match IntMap.find (Int.add base v) cases with Some a => a | None => default end).


Lemma validate_jumptable_correct:
  forall cases default tbl ofs v sz,
  validate_jumptable cases default tbl ofs = true ->
  Int.ltu (Int.sub v ofs) sz = true ->
  Int.unsigned sz <= list_length_z tbl <= Int.max_signed ->
  list_nth_z tbl (Int.signed (Int.sub v ofs)) =
  Some(match IntMap.find v cases with Some a => a | None => default end).


Lemma validate_correct_rec:
  forall default v t cases lo hi,
  validate default cases t lo hi = true ->
  lo <= Int.unsigned v <= hi ->
  comptree_match v t = Some (switch_target v default cases).


Definition table_tree_agree
    (default: nat) (cases: table) (t: comptree) : Prop :=
  forall v, comptree_match v t = Some(switch_target v default cases).

Theorem validate_switch_correct:
  forall default t cases,
  validate_switch default cases t = true ->
  table_tree_agree default cases t.