Module AST


This file defines a number of data types and operations used in the abstract syntax trees of many of the intermediate languages.

Require Import String.
Require Import Coqlib Maps Errors Integers Floats.
Require Archi.

Set Implicit Arguments.

Syntactic elements


Identifiers (names of local variables, of global symbols and functions, etc) are represented by the type positive of positive integers.

Definition ident := positive.

Definition ident_eq := peq.

The intermediate languages are weakly typed, using the following types:

Inductive typ : Type :=
  | Tint (* 32-bit integers or pointers *)
  | Tfloat (* 64-bit double-precision floats *)
  | Tlong (* 64-bit integers *)
  | Tsingle (* 32-bit single-precision floats *)
  | Tany32 (* any 32-bit value *)
  | Tany64. (* any 64-bit value, i.e. any value *)

Lemma typ_eq: forall (t1 t2: typ), {t1=t2} + {t1<>t2}.
Proof.
decide equality. Defined.
Global Opaque typ_eq.

Definition list_typ_eq: forall (l1 l2: list typ), {l1=l2} + {l1<>l2}
                     := list_eq_dec typ_eq.

Definition Tptr : typ := if Archi.ptr64 then Tlong else Tint.

Definition typesize (ty: typ) : Z :=
  match ty with
  | Tint => 4
  | Tfloat => 8
  | Tlong => 8
  | Tsingle => 4
  | Tany32 => 4
  | Tany64 => 8
  end.

Lemma typesize_pos: forall ty, typesize ty > 0.
Proof.
destruct ty; simpl; lia. Qed.

Lemma typesize_Tptr: typesize Tptr = if Archi.ptr64 then 8 else 4.
Proof.
unfold Tptr; destruct Archi.ptr64; auto. Qed.

All values of size 32 bits are also of type Tany32. All values are of type Tany64. This corresponds to the following subtyping relation over types.

Definition subtype (ty1 ty2: typ) : bool :=
  match ty1, ty2 with
  | Tint, Tint => true
  | Tlong, Tlong => true
  | Tfloat, Tfloat => true
  | Tsingle, Tsingle => true
  | (Tint | Tsingle | Tany32), Tany32 => true
  | _, Tany64 => true
  | _, _ => false
  end.

Fixpoint subtype_list (tyl1 tyl2: list typ) : bool :=
  match tyl1, tyl2 with
  | nil, nil => true
  | ty1::tys1, ty2::tys2 => subtype ty1 ty2 && subtype_list tys1 tys2
  | _, _ => false
  end.

To describe function arguments and function return values, we use the more precise types below.

Inductive xtype : Type :=
  | Xbool (* Boolean value (0 or 1) *)
  | Xint8signed (* 8-bit signed integer *)
  | Xint8unsigned (* 8-bit unsigned integer *)
  | Xint16signed (* 16-bit signed integer *)
  | Xint16unsigned (* 16-bit unsigned integer *)
  | Xint (* 32-bit integers or pointers *)
  | Xfloat (* 64-bit double-precision floats *)
  | Xlong (* 64-bit integers *)
  | Xsingle (* 32-bit single-precision floats *)
  | Xptr (* pointers and pointer-sized integers *)
  | Xany32 (* any 32-bit value *)
  | Xany64 (* any 64-bit value, i.e. any value *)
  | Xvoid. (* no meaningful value *)

Definition Xsize_t := if Archi.ptr64 then Xlong else Xint.

Lemma xtype_eq: forall (t1 t2: xtype), {t1=t2} + {t1<>t2}.
Proof.
decide equality. Defined.
Global Opaque xtype_eq.

Definition inj_type (t: typ) : xtype :=
  match t with
  | Tint => Xint
  | Tfloat => Xfloat
  | Tlong => Xlong
  | Tsingle => Xsingle
  | Tany32 => Xany32
  | Tany64 => Xany64
  end.

Definition proj_xtype (x: xtype) : typ :=
  match x with
  | Xbool | Xint8signed | Xint8unsigned | Xint16signed | Xint16unsigned | Xint => Tint
  | Xfloat => Tfloat
  | Xlong => Tlong
  | Xsingle => Tsingle
  | Xptr => Tptr
  | Xany32 => Tany32
  | Xany64 => Tany64
  | Xvoid => Tint
  end.

Lemma proj_inj_type: forall t, proj_xtype (inj_type t) = t.
Proof.
  destruct t; auto.
Qed.

Additionally, function definitions and function calls are annotated by function signatures indicating: These signatures are used in particular to determine appropriate calling conventions for the function.

Record calling_convention : Type := mkcallconv {
  cc_vararg: option Z; (* variable-arity function (+ number of fixed args) *)
  cc_unproto: bool; (* old-style unprototyped function *)
  cc_structret: bool (* function returning a struct *)
}.

Definition cc_default :=
  {| cc_vararg := None; cc_unproto := false; cc_structret := false |}.

Definition calling_convention_eq (x y: calling_convention) : {x=y} + {x<>y}.
Proof.
  decide equality; try (apply bool_dec). decide equality; apply Z.eq_dec.
Defined.
Global Opaque calling_convention_eq.

Record signature : Type := mksignature {
  sig_args: list xtype;
  sig_res: xtype;
  sig_cc: calling_convention
}.

Definition proj_sig_args (s: signature) : list typ := List.map proj_xtype s.(sig_args).
Definition proj_sig_res (s: signature) : typ := proj_xtype s.(sig_res).

Definition signature_eq: forall (s1 s2: signature), {s1=s2} + {s1<>s2}.
Proof.
  generalize xtype_eq, list_eq_dec, calling_convention_eq; decide equality.
Defined.
Global Opaque signature_eq.

Declare Scope asttyp_scope.
Notation "[ ---> y ]" := (mksignature nil y cc_default) : asttyp_scope.
Notation "[ x ---> y ]" :=
  (mksignature (@cons xtype x nil) y cc_default) : asttyp_scope.
Notation "[ x1 ; x2 ; .. ; xn ---> y ]" :=
  (mksignature (@cons xtype x1 (@cons xtype x2 .. (@cons xtype xn nil) ..)) y cc_default) : asttyp_scope.

Delimit Scope asttyp_scope with asttyp.
Local Open Scope asttyp_scope.

Definition signature_main := [ ---> Xint].

Memory accesses (load and store instructions) are annotated by a ``memory chunk'' indicating the type, size and signedness of the chunk of memory being accessed.

Inductive memory_chunk : Type :=
  | Mbool (* 8-bit integer containing 0 or 1 *)
  | Mint8signed (* 8-bit signed integer *)
  | Mint8unsigned (* 8-bit unsigned integer *)
  | Mint16signed (* 16-bit signed integer *)
  | Mint16unsigned (* 16-bit unsigned integer *)
  | Mint32 (* 32-bit integer, or pointer *)
  | Mint64 (* 64-bit integer *)
  | Mfloat32 (* 32-bit single-precision float *)
  | Mfloat64 (* 64-bit double-precision float *)
  | Many32 (* any value that fits in 32 bits *)
  | Many64. (* any value *)

Definition chunk_eq: forall (c1 c2: memory_chunk), {c1=c2} + {c1<>c2}.
Proof.
decide equality. Defined.
Global Opaque chunk_eq.

Definition Mptr : memory_chunk := if Archi.ptr64 then Mint64 else Mint32.

The type (integer/pointer or float) of a chunk.

Definition type_of_chunk (c: memory_chunk) : typ :=
  match c with
  | Mbool => Tint
  | Mint8signed => Tint
  | Mint8unsigned => Tint
  | Mint16signed => Tint
  | Mint16unsigned => Tint
  | Mint32 => Tint
  | Mint64 => Tlong
  | Mfloat32 => Tsingle
  | Mfloat64 => Tfloat
  | Many32 => Tany32
  | Many64 => Tany64
  end.

Lemma type_of_Mptr: type_of_chunk Mptr = Tptr.
Proof.
unfold Mptr, Tptr; destruct Archi.ptr64; auto. Qed.

Same, as an extended type.

Definition xtype_of_chunk (c: memory_chunk) : xtype :=
  match c with
  | Mbool => Xbool
  | Mint8signed => Xint8signed
  | Mint8unsigned => Xint8unsigned
  | Mint16signed => Xint16signed
  | Mint16unsigned => Xint16unsigned
  | Mint32 => Xint
  | Mint64 => Xlong
  | Mfloat32 => Xsingle
  | Mfloat64 => Xfloat
  | Many32 => Xany32
  | Many64 => Xany64
  end.

Lemma proj_xtype_of_chunk:
  forall chunk, proj_xtype (xtype_of_chunk chunk) = type_of_chunk chunk.
Proof.
  destruct chunk; auto.
Qed.

The chunk that is appropriate to store and reload a value of the given type, without losing information.

Definition chunk_of_type (ty: typ) :=
  match ty with
  | Tint => Mint32
  | Tfloat => Mfloat64
  | Tlong => Mint64
  | Tsingle => Mfloat32
  | Tany32 => Many32
  | Tany64 => Many64
  end.

Lemma chunk_of_Tptr: chunk_of_type Tptr = Mptr.
Proof.
unfold Mptr, Tptr; destruct Archi.ptr64; auto. Qed.

Initialization data for global variables.

Inductive init_data: Type :=
  | Init_int8: int -> init_data
  | Init_int16: int -> init_data
  | Init_int32: int -> init_data
  | Init_int64: int64 -> init_data
  | Init_float32: float32 -> init_data
  | Init_float64: float -> init_data
  | Init_space: Z -> init_data
  | Init_addrof: ident -> ptrofs -> init_data. (* address of symbol + offset *)

Definition init_data_size (i: init_data) : Z :=
  match i with
  | Init_int8 _ => 1
  | Init_int16 _ => 2
  | Init_int32 _ => 4
  | Init_int64 _ => 8
  | Init_float32 _ => 4
  | Init_float64 _ => 8
  | Init_addrof _ _ => if Archi.ptr64 then 8 else 4
  | Init_space n => Z.max n 0
  end.

Fixpoint init_data_list_size (il: list init_data) {struct il} : Z :=
  match il with
  | nil => 0
  | i :: il' => init_data_size i + init_data_list_size il'
  end.

Lemma init_data_size_pos:
  forall i, init_data_size i >= 0.
Proof.
  destruct i; simpl; try extlia. destruct Archi.ptr64; lia.
Qed.

Lemma init_data_list_size_pos:
  forall il, init_data_list_size il >= 0.
Proof.
  induction il; simpl. lia. generalize (init_data_size_pos a); lia.
Qed.

Information attached to global variables.

Record globvar (V: Type) : Type := mkglobvar {
  gvar_info: V; (* language-dependent info, e.g. a type *)
  gvar_init: list init_data; (* initialization data *)
  gvar_readonly: bool; (* read-only variable? (const) *)
  gvar_volatile: bool (* volatile variable? *)
}.

Whole programs consist of: A global definition is either a global function or a global variable. The type of function descriptions and that of additional information for variables vary among the various intermediate languages and are taken as parameters to the program type. The other parts of whole programs are common to all languages.

Inductive globdef (F V: Type) : Type :=
  | Gfun (f: F)
  | Gvar (v: globvar V).

Arguments Gfun [F V].
Arguments Gvar [F V].

Record program (F V: Type) : Type := mkprogram {
  prog_defs: list (ident * globdef F V);
  prog_public: list ident;
  prog_main: ident
}.

Definition prog_defs_names (F V: Type) (p: program F V) : list ident :=
  List.map fst p.(prog_defs).

The "definition map" of a program maps names of globals to their definitions. If several definitions have the same name, the one appearing last in p.(prog_defs) wins.

Definition prog_defmap (F V: Type) (p: program F V) : PTree.t (globdef F V) :=
  PTree_Properties.of_list p.(prog_defs).

Section DEFMAP.

Variables F V: Type.
Variable p: program F V.

Lemma in_prog_defmap:
  forall id g, (prog_defmap p)!id = Some g -> In (id, g) (prog_defs p).
Proof.
  apply PTree_Properties.in_of_list.
Qed.

Lemma prog_defmap_dom:
  forall id, In id (prog_defs_names p) -> exists g, (prog_defmap p)!id = Some g.
Proof.
  apply PTree_Properties.of_list_dom.
Qed.

Lemma prog_defmap_unique:
  forall defs1 id g defs2,
  prog_defs p = defs1 ++ (id, g) :: defs2 ->
  ~In id (map fst defs2) ->
  (prog_defmap p)!id = Some g.
Proof.
  unfold prog_defmap; intros. rewrite H. apply PTree_Properties.of_list_unique; auto.
Qed.

Lemma prog_defmap_norepet:
  forall id g,
  list_norepet (prog_defs_names p) ->
  In (id, g) (prog_defs p) ->
  (prog_defmap p)!id = Some g.
Proof.
  apply PTree_Properties.of_list_norepet.
Qed.

End DEFMAP.

Generic transformations over programs


We now define a general iterator over programs that applies a given code transformation function to all function descriptions and leaves the other parts of the program unchanged.

Section TRANSF_PROGRAM.

Variable A B V: Type.
Variable transf: A -> B.

Definition transform_program_globdef (idg: ident * globdef A V) : ident * globdef B V :=
  match idg with
  | (id, Gfun f) => (id, Gfun (transf f))
  | (id, Gvar v) => (id, Gvar v)
  end.

Definition transform_program (p: program A V) : program B V :=
  mkprogram
    (List.map transform_program_globdef p.(prog_defs))
    p.(prog_public)
    p.(prog_main).

End TRANSF_PROGRAM.

The following is a more general presentation of transform_program:

Local Open Scope error_monad_scope.

Section TRANSF_PROGRAM_GEN.

Variables A B V W: Type.
Variable transf_fun: ident -> A -> res B.
Variable transf_var: ident -> V -> res W.

Definition transf_globvar (i: ident) (g: globvar V) : res (globvar W) :=
  do info' <- transf_var i g.(gvar_info);
  OK (mkglobvar info' g.(gvar_init) g.(gvar_readonly) g.(gvar_volatile)).

Fixpoint transf_globdefs (l: list (ident * globdef A V)) : res (list (ident * globdef B W)) :=
  match l with
  | nil => OK nil
  | (id, Gfun f) :: l' =>
    match transf_fun id f with
      | Error msg => Error (MSG "In function " :: CTX id :: MSG ": " :: msg)
      | OK tf =>
        do tl' <- transf_globdefs l'; OK ((id, Gfun tf) :: tl')
    end
  | (id, Gvar v) :: l' =>
    match transf_globvar id v with
      | Error msg => Error (MSG "In variable " :: CTX id :: MSG ": " :: msg)
      | OK tv =>
        do tl' <- transf_globdefs l'; OK ((id, Gvar tv) :: tl')
    end
  end.

Definition transform_partial_program2 (p: program A V) : res (program B W) :=
  do gl' <- transf_globdefs p.(prog_defs);
  OK (mkprogram gl' p.(prog_public) p.(prog_main)).

End TRANSF_PROGRAM_GEN.

The following is a special case of transform_partial_program2, where only function definitions are transformed, but not variable definitions.

Section TRANSF_PARTIAL_PROGRAM.

Variable A B V: Type.
Variable transf_fun: A -> res B.

Definition transform_partial_program (p: program A V) : res (program B V) :=
  transform_partial_program2 (fun i f => transf_fun f) (fun i v => OK v) p.

End TRANSF_PARTIAL_PROGRAM.

Lemma transform_program_partial_program:
  forall (A B V: Type) (transf_fun: A -> B) (p: program A V),
  transform_partial_program (fun f => OK (transf_fun f)) p = OK (transform_program transf_fun p).
Proof.
  intros. unfold transform_partial_program, transform_partial_program2.
  assert (EQ: forall l,
              transf_globdefs (fun i f => OK (transf_fun f)) (fun i (v: V) => OK v) l =
              OK (List.map (transform_program_globdef transf_fun) l)).
  { induction l as [ | [id g] l]; simpl.
  - auto.
  - destruct g; simpl; rewrite IHl; simpl. auto. destruct v; auto.
  }
  rewrite EQ; simpl. auto.
Qed.

External functions


For most languages, the functions composing the program are either internal functions, defined within the language, or external functions, defined outside. External functions include system calls but also compiler built-in functions. We define a type for external functions and associated operations.

Inductive external_function : Type :=
  | EF_external (name: string) (sg: signature)
A system call or library function. Produces an event in the trace.
  | EF_builtin (name: string) (sg: signature)
A compiler built-in function. Behaves like an external, but can be inlined by the compiler.
  | EF_runtime (name: string) (sg: signature)
A function from the run-time library. Behaves like an external, but must not be redefined.
  | EF_vload (chunk: memory_chunk)
A volatile read operation. If the address given as first argument points within a volatile global variable, generate an event and return the value found in this event. Otherwise, produce no event and behave like a regular memory load.
  | EF_vstore (chunk: memory_chunk)
A volatile store operation. If the address given as first argument points within a volatile global variable, generate an event. Otherwise, produce no event and behave like a regular memory store.
  | EF_malloc
Dynamic memory allocation. Takes the requested size in bytes as argument; returns a pointer to a fresh block of the given size. Produces no observable event.
  | EF_free
Dynamic memory deallocation. Takes a pointer to a block allocated by an EF_malloc external call and frees the corresponding block. Produces no observable event.
  | EF_memcpy (sz: Z) (al: Z)
Block copy, of sz bytes, between addresses that are al-aligned.
  | EF_annot (kind: positive) (text: string) (targs: list typ)
A programmer-supplied annotation. Takes zero, one or several arguments, produces an event carrying the text and the values of these arguments, and returns no value.
  | EF_annot_val (kind: positive) (text: string) (targ: typ)
Another form of annotation that takes one argument, produces an event carrying the text and the value of this argument, and returns the value of the argument.
  | EF_inline_asm (text: string) (sg: signature) (clobbers: list string)
Inline asm statements. Semantically, treated like an annotation with no parameters (EF_annot text nil). To be used with caution, as it can invalidate the semantic preservation theorem. Generated only if -finline-asm is given.
  | EF_debug (kind: positive) (text: ident) (targs: list typ).
Transport debugging information from the front-end to the generated assembly. Takes zero, one or several arguments like EF_annot. Unlike EF_annot, produces no observable event.

The type signature of an external function.

Definition ef_sig (ef: external_function): signature :=
  match ef with
  | EF_external name sg => sg
  | EF_builtin name sg => sg
  | EF_runtime name sg => sg
  | EF_vload chunk => [Xptr ---> xtype_of_chunk chunk]
  | EF_vstore chunk => [Xptr; xtype_of_chunk chunk ---> Xvoid]
  | EF_malloc => [Xsize_t ---> Xptr]
  | EF_free => [Xptr ---> Xvoid]
  | EF_memcpy sz al => [Xptr; Xptr ---> Xvoid]
  | EF_annot kind text targs => mksignature (List.map inj_type targs) Xvoid cc_default
  | EF_annot_val kind text targ => [inj_type targ ---> inj_type targ]
  | EF_inline_asm text sg clob => sg
  | EF_debug kind text targs => mksignature (List.map inj_type targs) Xvoid cc_default
  end.

Whether an external function should be inlined by the compiler.

Definition ef_inline (ef: external_function) : bool :=
  match ef with
  | EF_external name sg => false
  | EF_builtin name sg => true
  | EF_runtime name sg => false
  | EF_vload chunk => true
  | EF_vstore chunk => true
  | EF_malloc => false
  | EF_free => false
  | EF_memcpy sz al => true
  | EF_annot kind text targs => true
  | EF_annot_val kind text rg => true
  | EF_inline_asm text sg clob => true
  | EF_debug kind text targs => true
  end.

Whether an external function must reload its arguments.

Definition ef_reloads (ef: external_function) : bool :=
  match ef with
  | EF_annot kind text targs => false
  | EF_debug kind text targs => false
  | _ => true
  end.

Equality between external functions. Used in module Allocation.

Definition external_function_eq: forall (ef1 ef2: external_function), {ef1=ef2} + {ef1<>ef2}.
Proof.
  generalize ident_eq string_dec signature_eq chunk_eq typ_eq xtype_eq list_eq_dec zeq Int.eq_dec; intros.
  decide equality.
Defined.
Global Opaque external_function_eq.

Function definitions are the union of internal and external functions.

Inductive fundef (F: Type): Type :=
  | Internal: F -> fundef F
  | External: external_function -> fundef F.

Arguments External [F].

Section TRANSF_FUNDEF.

Variable A B: Type.
Variable transf: A -> B.

Definition transf_fundef (fd: fundef A): fundef B :=
  match fd with
  | Internal f => Internal (transf f)
  | External ef => External ef
  end.

End TRANSF_FUNDEF.

Section TRANSF_PARTIAL_FUNDEF.

Variable A B: Type.
Variable transf_partial: A -> res B.

Definition transf_partial_fundef (fd: fundef A): res (fundef B) :=
  match fd with
  | Internal f => do f' <- transf_partial f; OK (Internal f')
  | External ef => OK (External ef)
  end.

End TRANSF_PARTIAL_FUNDEF.

Register pairs


Set Contextual Implicit.

In some intermediate languages (LTL, Mach), 64-bit integers can be split into two 32-bit halves and held in a pair of registers. Syntactically, this is captured by the type rpair below.

Inductive rpair (A: Type) : Type :=
  | One (r: A)
  | Twolong (rhi rlo: A).

Definition typ_rpair (A: Type) (typ_of: A -> typ) (p: rpair A): typ :=
  match p with
  | One r => typ_of r
  | Twolong rhi rlo => Tlong
  end.

Definition map_rpair (A B: Type) (f: A -> B) (p: rpair A): rpair B :=
  match p with
  | One r => One (f r)
  | Twolong rhi rlo => Twolong (f rhi) (f rlo)
  end.

Definition regs_of_rpair (A: Type) (p: rpair A): list A :=
  match p with
  | One r => r :: nil
  | Twolong rhi rlo => rhi :: rlo :: nil
  end.

Fixpoint regs_of_rpairs (A: Type) (l: list (rpair A)): list A :=
  match l with
  | nil => nil
  | p :: l => regs_of_rpair p ++ regs_of_rpairs l
  end.

Lemma in_regs_of_rpairs:
  forall (A: Type) (x: A) p, In x (regs_of_rpair p) -> forall l, In p l -> In x (regs_of_rpairs l).
Proof.
  induction l; simpl; intros. auto. apply in_app. destruct H0; auto. subst a. auto.
Qed.

Lemma in_regs_of_rpairs_inv:
  forall (A: Type) (x: A) l, In x (regs_of_rpairs l) -> exists p, In p l /\ In x (regs_of_rpair p).
Proof.
  induction l; simpl; intros. contradiction.
  rewrite in_app_iff in H; destruct H.
  exists a; auto.
  apply IHl in H. firstorder auto.
Qed.

Definition forall_rpair (A: Type) (P: A -> Prop) (p: rpair A): Prop :=
  match p with
  | One r => P r
  | Twolong rhi rlo => P rhi /\ P rlo
  end.

Arguments and results to builtin functions


Inductive builtin_arg (A: Type) : Type :=
  | BA (x: A)
  | BA_int (n: int)
  | BA_long (n: int64)
  | BA_float (f: float)
  | BA_single (f: float32)
  | BA_loadstack (chunk: memory_chunk) (ofs: ptrofs)
  | BA_addrstack (ofs: ptrofs)
  | BA_loadglobal (chunk: memory_chunk) (id: ident) (ofs: ptrofs)
  | BA_addrglobal (id: ident) (ofs: ptrofs)
  | BA_splitlong (hi lo: builtin_arg A)
  | BA_addptr (a1 a2: builtin_arg A).

Inductive builtin_res (A: Type) : Type :=
  | BR (x: A)
  | BR_none
  | BR_splitlong (hi lo: builtin_res A).

Fixpoint globals_of_builtin_arg (A: Type) (a: builtin_arg A) : list ident :=
  match a with
  | BA_loadglobal chunk id ofs => id :: nil
  | BA_addrglobal id ofs => id :: nil
  | BA_splitlong hi lo => globals_of_builtin_arg hi ++ globals_of_builtin_arg lo
  | BA_addptr a1 a2 => globals_of_builtin_arg a1 ++ globals_of_builtin_arg a2
  | _ => nil
  end.

Definition globals_of_builtin_args (A: Type) (al: list (builtin_arg A)) : list ident :=
  List.fold_right (fun a l => globals_of_builtin_arg a ++ l) nil al.

Fixpoint params_of_builtin_arg (A: Type) (a: builtin_arg A) : list A :=
  match a with
  | BA x => x :: nil
  | BA_splitlong hi lo => params_of_builtin_arg hi ++ params_of_builtin_arg lo
  | BA_addptr a1 a2 => params_of_builtin_arg a1 ++ params_of_builtin_arg a2
  | _ => nil
  end.

Definition params_of_builtin_args (A: Type) (al: list (builtin_arg A)) : list A :=
  List.fold_right (fun a l => params_of_builtin_arg a ++ l) nil al.

Fixpoint params_of_builtin_res (A: Type) (a: builtin_res A) : list A :=
  match a with
  | BR x => x :: nil
  | BR_none => nil
  | BR_splitlong hi lo => params_of_builtin_res hi ++ params_of_builtin_res lo
  end.

Fixpoint map_builtin_arg (A B: Type) (f: A -> B) (a: builtin_arg A) : builtin_arg B :=
  match a with
  | BA x => BA (f x)
  | BA_int n => BA_int n
  | BA_long n => BA_long n
  | BA_float n => BA_float n
  | BA_single n => BA_single n
  | BA_loadstack chunk ofs => BA_loadstack chunk ofs
  | BA_addrstack ofs => BA_addrstack ofs
  | BA_loadglobal chunk id ofs => BA_loadglobal chunk id ofs
  | BA_addrglobal id ofs => BA_addrglobal id ofs
  | BA_splitlong hi lo =>
      BA_splitlong (map_builtin_arg f hi) (map_builtin_arg f lo)
  | BA_addptr a1 a2 =>
      BA_addptr (map_builtin_arg f a1) (map_builtin_arg f a2)
  end.

Fixpoint map_builtin_res (A B: Type) (f: A -> B) (a: builtin_res A) : builtin_res B :=
  match a with
  | BR x => BR (f x)
  | BR_none => BR_none
  | BR_splitlong hi lo =>
      BR_splitlong (map_builtin_res f hi) (map_builtin_res f lo)
  end.

Which kinds of builtin arguments are supported by which external function.

Inductive builtin_arg_constraint : Type :=
  | OK_default
  | OK_const
  | OK_addrstack
  | OK_addressing
  | OK_all.