Correctness proof for operator strength reduction.
Require Import Coqlib Compopts.
Require Import Integers Floats Values Memory Globalenvs Events.
Require Import Op Registers RTL ValueDomain ValueAOp ValueAnalysis.
Require Import ConstpropOp.
Local Transparent Archi.ptr64.
Correctness of strength reduction
We now show that strength reduction over operators and addressing
modes preserve semantics: the strength-reduced operations and
addressings evaluate to the same values as the original ones if the
actual arguments match the static approximations used for strength
reduction.
Section STRENGTH_REDUCTION.
Variable bc:
block_classification.
Variable ge:
genv.
Hypothesis GENV:
genv_match bc ge.
Variable sp:
block.
Hypothesis STACK:
bc sp =
BCstack.
Variable ae:
AE.t.
Variable rs:
regset.
Variable m:
mem.
Hypothesis MATCH:
ematch bc rs ae.
Lemma match_G:
forall r id ofs,
AE.get r ae =
Ptr(
Gl id ofs) ->
Val.lessdef rs#
r (
Genv.symbol_address ge id ofs).
Proof.
Lemma match_S:
forall r ofs,
AE.get r ae =
Ptr(
Stk ofs) ->
Val.lessdef rs#
r (
Vptr sp ofs).
Proof.
Ltac InvApproxRegs :=
match goal with
| [
H: _ :: _ = _ :: _ |- _ ] =>
injection H;
clear H;
intros;
InvApproxRegs
| [
H: ?
v =
AE.get ?
r ae |- _ ] =>
generalize (
MATCH r);
rewrite <-
H;
clear H;
intro;
InvApproxRegs
| _ =>
idtac
end.
Ltac SimplVM :=
match goal with
| [
H:
vmatch _ ?
v (
I ?
n) |- _ ] =>
let E :=
fresh in
assert (
E:
v =
Vint n)
by (
inversion H;
auto);
rewrite E in *;
clear H;
SimplVM
| [
H:
vmatch _ ?
v (
L ?
n) |- _ ] =>
let E :=
fresh in
assert (
E:
v =
Vlong n)
by (
inversion H;
auto);
rewrite E in *;
clear H;
SimplVM
| [
H:
vmatch _ ?
v (
F ?
n) |- _ ] =>
let E :=
fresh in
assert (
E:
v =
Vfloat n)
by (
inversion H;
auto);
rewrite E in *;
clear H;
SimplVM
| [
H:
vmatch _ ?
v (
FS ?
n) |- _ ] =>
let E :=
fresh in
assert (
E:
v =
Vsingle n)
by (
inversion H;
auto);
rewrite E in *;
clear H;
SimplVM
| [
H:
vmatch _ ?
v (
Ptr(
Gl ?
id ?
ofs)) |- _ ] =>
let E :=
fresh in
assert (
E:
Val.lessdef v (
Genv.symbol_address ge id ofs))
by (
eapply vmatch_ptr_gl;
eauto);
clear H;
SimplVM
| [
H:
vmatch _ ?
v (
Ptr(
Stk ?
ofs)) |- _ ] =>
let E :=
fresh in
assert (
E:
Val.lessdef v (
Vptr sp ofs))
by (
eapply vmatch_ptr_stk;
eauto);
clear H;
SimplVM
| _ =>
idtac
end.
Lemma const_for_result_correct:
forall a op v,
const_for_result a =
Some op ->
vmatch bc v a ->
exists v',
eval_operation ge (
Vptr sp Ptrofs.zero)
op nil m =
Some v' /\
Val.lessdef v v'.
Proof.
Lemma cond_strength_reduction_correct:
forall cond args vl,
vl =
map (
fun r =>
AE.get r ae)
args ->
let (
cond',
args') :=
cond_strength_reduction cond args vl in
eval_condition cond' rs##
args' m =
eval_condition cond rs##
args m.
Proof.
Lemma make_cmp_base_correct:
forall c args vl,
vl =
map (
fun r =>
AE.get r ae)
args ->
let (
op',
args') :=
make_cmp_base c args vl in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op' rs##
args' m =
Some v
/\
Val.lessdef (
Val.of_optbool (
eval_condition c rs##
args m))
v.
Proof.
Lemma make_cmp_correct:
forall c args vl,
vl =
map (
fun r =>
AE.get r ae)
args ->
let (
op',
args') :=
make_cmp c args vl in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op' rs##
args' m =
Some v
/\
Val.lessdef (
Val.of_optbool (
eval_condition c rs##
args m))
v.
Proof.
Lemma make_select_correct:
forall c ty r1 r2 args vl,
vl =
map (
fun r =>
AE.get r ae)
args ->
let (
op',
args') :=
make_select c ty r1 r2 args vl in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op' rs##
args' m =
Some v
/\
Val.lessdef (
Val.select (
eval_condition c rs##
args m)
rs#
r1 rs#
r2 ty)
v.
Proof.
Lemma make_addimm_correct:
forall n r,
let (
op,
args) :=
make_addimm n r in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.add rs#
r (
Vint n))
v.
Proof.
Lemma make_shlimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_shlimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shl rs#
r1 (
Vint n))
v.
Proof.
Lemma make_shrimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_shrimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shr rs#
r1 (
Vint n))
v.
Proof.
Lemma make_shruimm_aux_correct:
forall n r1,
Int.ltu n Int.iwordsize =
true ->
let (
op,
args) :=
make_shruimm_aux n r1 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shru rs#
r1 (
Vint n))
v.
Proof.
Lemma make_shruimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_shruimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shru rs#
r1 (
Vint n))
v.
Proof.
Lemma make_mulimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_mulimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.mul rs#
r1 (
Vint n))
v.
Proof.
Lemma make_divimm_correct:
forall n r1 r2 v,
Val.divs rs#
r1 rs#
r2 =
Some v ->
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_divimm n r1 r2 in
exists w,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some w /\
Val.lessdef v w.
Proof.
Lemma make_divuimm_correct:
forall n r1 r2 v,
Val.divu rs#
r1 rs#
r2 =
Some v ->
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_divuimm n r1 r2 in
exists w,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some w /\
Val.lessdef v w.
Proof.
Lemma make_andimm_correct:
forall n r x,
vmatch bc rs#
r x ->
let (
op,
args) :=
make_andimm n r x in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.and rs#
r (
Vint n))
v.
Proof.
Lemma make_orimm_correct:
forall n r,
let (
op,
args) :=
make_orimm n r in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.or rs#
r (
Vint n))
v.
Proof.
Lemma make_xorimm_correct:
forall n r,
let (
op,
args) :=
make_xorimm n r in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.xor rs#
r (
Vint n))
v.
Proof.
Lemma make_addlimm_correct:
forall n r,
let (
op,
args) :=
make_addlimm n r in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.addl rs#
r (
Vlong n))
v.
Proof.
Lemma make_mullimm_correct:
forall n r1 r2,
rs#
r2 =
Vlong n ->
let (
op,
args) :=
make_mullimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.mull rs#
r1 (
Vlong n))
v.
Proof.
Lemma make_shllimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_shllimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shll rs#
r1 (
Vint n))
v.
Proof.
Lemma make_shrlimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_shrlimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shrl rs#
r1 (
Vint n))
v.
Proof.
Lemma make_shrluimm_aux_correct:
forall n r1,
Int.ltu n Int64.iwordsize' =
true ->
let (
op,
args) :=
make_shrluimm_aux n r1 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shrlu rs#
r1 (
Vint n))
v.
Proof.
Lemma make_shrluimm_correct:
forall n r1 r2,
rs#
r2 =
Vint n ->
let (
op,
args) :=
make_shrluimm n r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.shrlu rs#
r1 (
Vint n))
v.
Proof.
Lemma make_andlimm_correct:
forall n r x,
let (
op,
args) :=
make_andlimm n r x in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.andl rs#
r (
Vlong n))
v.
Proof.
Lemma make_orlimm_correct:
forall n r,
let (
op,
args) :=
make_orlimm n r in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.orl rs#
r (
Vlong n))
v.
Proof.
Lemma make_xorlimm_correct:
forall n r,
let (
op,
args) :=
make_xorlimm n r in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.xorl rs#
r (
Vlong n))
v.
Proof.
Lemma make_divluimm_correct:
forall n r1 r2 v,
Val.divlu rs#
r1 rs#
r2 =
Some v ->
rs#
r2 =
Vlong n ->
let (
op,
args) :=
make_divluimm n r1 r2 in
exists w,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some w /\
Val.lessdef v w.
Proof.
intros;
unfold make_divluimm.
destruct (
Int64.is_power2' n)
eqn:?.
exploit Int64.is_power2'_range;
eauto.
intros RANGE.
replace v with (
Val.shrlu rs#
r1 (
Vint i)).
apply make_shrluimm_aux_correct;
auto.
rewrite H0 in H.
destruct (
rs#
r1);
simpl in *;
inv H.
rewrite RANGE.
destruct (
Int64.eq n Int64.zero);
inv H2.
rewrite (
Int64.divu_pow2' i0 n i)
by auto.
auto.
exists v;
auto.
Qed.
Lemma make_mulfimm_correct:
forall n r1 r2,
rs#
r2 =
Vfloat n ->
let (
op,
args) :=
make_mulfimm n r1 r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.mulf rs#
r1 rs#
r2)
v.
Proof.
Lemma make_divlimm_correct:
forall n r1 r2 v,
Val.divls rs#
r1 rs#
r2 =
Some v ->
rs#
r2 =
Vlong n ->
let (
op,
args) :=
make_divlimm n r1 r2 in
exists w,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some w /\
Val.lessdef v w.
Proof.
intros;
unfold make_divlimm.
destruct (
Int64.is_power2' n)
eqn:?.
destruct (
Int.ltu i (
Int.repr 63))
eqn:?.
rewrite H0 in H.
econstructor;
split.
simpl;
eauto.
eapply Val.divls_pow2;
eauto.
auto.
exists v;
auto.
exists v;
auto.
Qed.
Lemma make_mulfimm_correct_2:
forall n r1 r2,
rs#
r1 =
Vfloat n ->
let (
op,
args) :=
make_mulfimm n r2 r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.mulf rs#
r1 rs#
r2)
v.
Proof.
Lemma make_mulfsimm_correct:
forall n r1 r2,
rs#
r2 =
Vsingle n ->
let (
op,
args) :=
make_mulfsimm n r1 r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.mulfs rs#
r1 rs#
r2)
v.
Proof.
Lemma make_mulfsimm_correct_2:
forall n r1 r2,
rs#
r1 =
Vsingle n ->
let (
op,
args) :=
make_mulfsimm n r2 r1 r2 in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.mulfs rs#
r1 rs#
r2)
v.
Proof.
Lemma make_cast8signed_correct:
forall r x,
vmatch bc rs#
r x ->
let (
op,
args) :=
make_cast8signed r x in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.sign_ext 8
rs#
r)
v.
Proof.
Lemma make_cast16signed_correct:
forall r x,
vmatch bc rs#
r x ->
let (
op,
args) :=
make_cast16signed r x in
exists v,
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v /\
Val.lessdef (
Val.sign_ext 16
rs#
r)
v.
Proof.
Lemma op_strength_reduction_correct:
forall op args vl v,
vl =
map (
fun r =>
AE.get r ae)
args ->
eval_operation ge (
Vptr sp Ptrofs.zero)
op rs##
args m =
Some v ->
let (
op',
args') :=
op_strength_reduction op args vl in
exists w,
eval_operation ge (
Vptr sp Ptrofs.zero)
op' rs##
args' m =
Some w /\
Val.lessdef v w.
Proof.
Remark shift_symbol_address:
forall id ofs delta,
Genv.symbol_address ge id (
Ptrofs.add ofs (
Ptrofs.of_int delta)) =
Val.add (
Genv.symbol_address ge id ofs) (
Vint delta).
Proof.
Lemma addr_strength_reduction_correct:
forall addr args vl res,
vl =
map (
fun r =>
AE.get r ae)
args ->
eval_addressing ge (
Vptr sp Ptrofs.zero)
addr rs##
args =
Some res ->
let (
addr',
args') :=
addr_strength_reduction addr args vl in
exists res',
eval_addressing ge (
Vptr sp Ptrofs.zero)
addr' rs##
args' =
Some res' /\
Val.lessdef res res'.
Proof.
End STRENGTH_REDUCTION.