RTL function inlining: relational specification
Require Import Coqlib Wfsimpl Maps Errors Integers.
Require Import AST Linking.
Require Import Op Registers RTL.
Require Import Inlining.
Soundness of function environments.
A compile-time function environment is compatible with a whole
program if the following condition holds.
Definition fenv_compat (
p:
program) (
fenv:
funenv) :
Prop :=
forall id f,
fenv!
id =
Some f -> (
prog_defmap p)!
id =
Some (
Gfun (
Internal f)).
Lemma funenv_program_compat:
forall p,
fenv_compat p (
funenv_program p).
Proof.
Lemma fenv_compat_linkorder:
forall cunit prog fenv,
linkorder cunit prog ->
fenv_compat cunit fenv ->
fenv_compat prog fenv.
Proof.
intros;
red;
intros.
apply H0 in H1.
destruct (
prog_defmap_linkorder _ _ _ _
H H1)
as (
gd' &
P &
Q).
inv Q.
inv H3.
auto.
Qed.
Properties of shifting
Lemma shiftpos_eq:
forall x y,
Zpos (
shiftpos x y) = (
Zpos x +
Zpos y) - 1.
Proof.
Lemma shiftpos_inj:
forall x y n,
shiftpos x n =
shiftpos y n ->
x =
y.
Proof.
Lemma shiftpos_diff:
forall x y n,
x <>
y ->
shiftpos x n <>
shiftpos y n.
Proof.
intros;
red;
intros.
elim H.
eapply shiftpos_inj;
eauto.
Qed.
Lemma shiftpos_above:
forall x n,
Ple n (
shiftpos x n).
Proof.
Lemma shiftpos_not_below:
forall x n,
Plt (
shiftpos x n)
n ->
False.
Proof.
Lemma shiftpos_below:
forall x n,
Plt (
shiftpos x n) (
Pos.add x n).
Proof.
Lemma shiftpos_le:
forall x y n,
Ple x y ->
Ple (
shiftpos x n) (
shiftpos y n).
Proof.
Working with the state monad
Remark bind_inversion:
forall (
A B:
Type) (
f:
mon A) (
g:
A ->
mon B)
(
y:
B) (
s1 s3:
state) (
i:
sincr s1 s3),
bind f g s1 =
R y s3 i ->
exists x,
exists s2,
exists i1,
exists i2,
f s1 =
R x s2 i1 /\
g x s2 =
R y s3 i2.
Proof.
unfold bind;
intros.
destruct (
f s1).
exists x;
exists s';
exists I.
destruct (
g x s').
inv H.
exists I0;
auto.
Qed.
Ltac monadInv1 H :=
match type of H with
| (
R _ _ _ =
R _ _ _) =>
inversion H;
clear H;
try subst
| (
ret _ _ =
R _ _ _) =>
inversion H;
clear H;
try subst
| (
bind ?
F ?
G ?
S =
R ?
X ?
S' ?
I) =>
let x :=
fresh "x" in (
let s :=
fresh "s" in (
let i1 :=
fresh "INCR" in (
let i2 :=
fresh "INCR" in (
let EQ1 :=
fresh "EQ" in (
let EQ2 :=
fresh "EQ" in (
destruct (
bind_inversion _ _
F G X S S' I H)
as [
x [
s [
i1 [
i2 [
EQ1 EQ2]]]]];
clear H;
try (
monadInv1 EQ2)))))))
end.
Ltac monadInv H :=
match type of H with
| (
ret _ _ =
R _ _ _) =>
monadInv1 H
| (
bind ?
F ?
G ?
S =
R ?
X ?
S' ?
I) =>
monadInv1 H
| (?
F _ _ _ _ _ _ _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ _ _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ =
R _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
end.
Fixpoint mlist_iter2 {
A B:
Type} (
f:
A ->
B ->
mon unit) (
l:
list (
A*
B)):
mon unit :=
match l with
|
nil =>
ret tt
| (
x,
y) ::
l' =>
do z <-
f x y;
mlist_iter2 f l'
end.
Remark mlist_iter2_fold:
forall (
A B:
Type) (
f:
A ->
B ->
mon unit)
l s,
exists i,
mlist_iter2 f l s =
R tt (
fold_left (
fun a p =>
match f (
fst p) (
snd p)
a with R _
s2 _ =>
s2 end)
l s)
i.
Proof.
induction l;
simpl;
intros.
exists (
sincr_refl s);
auto.
destruct a as [
x y].
unfold bind.
simpl.
destruct (
f x y s)
as [
xx s1 i1].
destruct (
IHl s1)
as [
i2 EQ].
rewrite EQ.
econstructor;
eauto.
Qed.
Lemma ptree_mfold_spec:
forall (
A:
Type) (
f:
positive ->
A ->
mon unit)
t s x s' i,
ptree_mfold f t s =
R x s' i ->
exists i',
mlist_iter2 f (
PTree.elements t)
s =
R tt s' i'.
Proof.
Relational specification of the translation of moves
Inductive tr_moves (
c:
code) :
node ->
list reg ->
list reg ->
node ->
Prop :=
|
tr_moves_cons:
forall pc1 src srcs dst dsts pc2 pc3,
tr_moves c pc1 srcs dsts pc2 ->
c!
pc2 =
Some(
Iop Omove (
src ::
nil)
dst pc3) ->
tr_moves c pc1 (
src ::
srcs) (
dst ::
dsts)
pc3
|
tr_moves_nil:
forall srcs dsts pc,
srcs =
nil \/
dsts =
nil ->
tr_moves c pc srcs dsts pc.
Lemma add_moves_unchanged:
forall srcs dsts pc2 s pc1 s' i pc,
add_moves srcs dsts pc2 s =
R pc1 s' i ->
Plt pc s.(
st_nextnode) \/
Ple s'.(
st_nextnode)
pc ->
s'.(
st_code)!
pc =
s.(
st_code)!
pc.
Proof.
induction srcs;
simpl;
intros.
monadInv H.
auto.
destruct dsts;
monadInv H.
auto.
transitivity (
st_code s0)!
pc.
eapply IHsrcs;
eauto.
monadInv EQ;
simpl.
extlia.
monadInv EQ;
simpl.
apply PTree.gso.
inversion INCR0;
simpl in *.
extlia.
Qed.
Lemma add_moves_spec:
forall srcs dsts pc2 s pc1 s' i c,
add_moves srcs dsts pc2 s =
R pc1 s' i ->
(
forall pc,
Ple s.(
st_nextnode)
pc ->
Plt pc s'.(
st_nextnode) ->
c!
pc =
s'.(
st_code)!
pc) ->
tr_moves c pc1 srcs dsts pc2.
Proof.
induction srcs;
simpl;
intros.
monadInv H.
apply tr_moves_nil;
auto.
destruct dsts;
monadInv H.
apply tr_moves_nil;
auto.
apply tr_moves_cons with x.
eapply IHsrcs;
eauto.
intros.
inversion INCR.
apply H0;
extlia.
monadInv EQ.
rewrite H0.
erewrite add_moves_unchanged;
eauto.
simpl.
apply PTree.gss.
simpl.
extlia.
extlia.
inversion INCR;
inversion INCR0;
simpl in *;
extlia.
Qed.
Relational specification of CFG expansion
Section INLINING_SPEC.
Variable fenv:
funenv.
Definition context_below (
ctx1 ctx2:
context):
Prop :=
Ple (
Pos.add ctx1.(
dreg)
ctx1.(
mreg))
ctx2.(
dreg).
Definition context_stack_call (
ctx1 ctx2:
context):
Prop :=
ctx1.(
mstk) >= 0 /\
ctx1.(
dstk) +
ctx1.(
mstk) <=
ctx2.(
dstk).
Definition context_stack_tailcall (
ctx1:
context) (
f:
function) (
ctx2:
context) :
Prop :=
ctx2.(
dstk) =
align ctx1.(
dstk) (
min_alignment f.(
fn_stacksize)).
Section INLINING_BODY_SPEC.
Variable stacksize:
Z.
Inductive tr_instr:
context ->
node ->
instruction ->
code ->
Prop :=
|
tr_nop:
forall ctx pc c s,
c!(
spc ctx pc) =
Some (
Inop (
spc ctx s)) ->
tr_instr ctx pc (
Inop s)
c
|
tr_op:
forall ctx pc c op args res s,
Ple res ctx.(
mreg) ->
c!(
spc ctx pc) =
Some (
Iop (
sop ctx op) (
sregs ctx args) (
sreg ctx res) (
spc ctx s)) ->
tr_instr ctx pc (
Iop op args res s)
c
|
tr_load:
forall ctx pc c chunk addr args res s,
Ple res ctx.(
mreg) ->
c!(
spc ctx pc) =
Some (
Iload chunk (
saddr ctx addr) (
sregs ctx args) (
sreg ctx res) (
spc ctx s)) ->
tr_instr ctx pc (
Iload chunk addr args res s)
c
|
tr_store:
forall ctx pc c chunk addr args src s,
c!(
spc ctx pc) =
Some (
Istore chunk (
saddr ctx addr) (
sregs ctx args) (
sreg ctx src) (
spc ctx s)) ->
tr_instr ctx pc (
Istore chunk addr args src s)
c
|
tr_call:
forall ctx pc c sg ros args res s,
Ple res ctx.(
mreg) ->
c!(
spc ctx pc) =
Some (
Icall sg (
sros ctx ros) (
sregs ctx args) (
sreg ctx res) (
spc ctx s)) ->
tr_instr ctx pc (
Icall sg ros args res s)
c
|
tr_call_inlined:
forall ctx pc sg id args res s c f pc1 ctx',
Ple res ctx.(
mreg) ->
fenv!
id =
Some f ->
c!(
spc ctx pc) =
Some(
Inop pc1) ->
tr_moves c pc1 (
sregs ctx args) (
sregs ctx' f.(
fn_params)) (
spc ctx' f.(
fn_entrypoint)) ->
tr_funbody ctx' f c ->
ctx'.(
retinfo) =
Some(
spc ctx s,
sreg ctx res) ->
context_below ctx ctx' ->
context_stack_call ctx ctx' ->
tr_instr ctx pc (
Icall sg (
inr _
id)
args res s)
c
|
tr_tailcall:
forall ctx pc c sg ros args,
c!(
spc ctx pc) =
Some (
Itailcall sg (
sros ctx ros) (
sregs ctx args)) ->
ctx.(
retinfo) =
None ->
tr_instr ctx pc (
Itailcall sg ros args)
c
|
tr_tailcall_call:
forall ctx pc c sg ros args res s,
c!(
spc ctx pc) =
Some (
Icall sg (
sros ctx ros) (
sregs ctx args)
res s) ->
ctx.(
retinfo) =
Some(
s,
res) ->
tr_instr ctx pc (
Itailcall sg ros args)
c
|
tr_tailcall_inlined:
forall ctx pc sg id args c f pc1 ctx',
fenv!
id =
Some f ->
c!(
spc ctx pc) =
Some(
Inop pc1) ->
tr_moves c pc1 (
sregs ctx args) (
sregs ctx' f.(
fn_params)) (
spc ctx' f.(
fn_entrypoint)) ->
tr_funbody ctx' f c ->
ctx'.(
retinfo) =
ctx.(
retinfo) ->
context_below ctx ctx' ->
context_stack_tailcall ctx f ctx' ->
tr_instr ctx pc (
Itailcall sg (
inr _
id)
args)
c
|
tr_builtin:
forall ctx pc c ef args res s,
match res with BR r =>
Ple r ctx.(
mreg) | _ =>
True end ->
c!(
spc ctx pc) =
Some (
Ibuiltin ef (
map (
sbuiltinarg ctx)
args) (
sbuiltinres ctx res) (
spc ctx s)) ->
tr_instr ctx pc (
Ibuiltin ef args res s)
c
|
tr_cond:
forall ctx pc cond args s1 s2 c,
c!(
spc ctx pc) =
Some (
Icond cond (
sregs ctx args) (
spc ctx s1) (
spc ctx s2)) ->
tr_instr ctx pc (
Icond cond args s1 s2)
c
|
tr_jumptable:
forall ctx pc r tbl c,
c!(
spc ctx pc) =
Some (
Ijumptable (
sreg ctx r) (
List.map (
spc ctx)
tbl)) ->
tr_instr ctx pc (
Ijumptable r tbl)
c
|
tr_return:
forall ctx pc or c,
c!(
spc ctx pc) =
Some (
Ireturn (
option_map (
sreg ctx)
or)) ->
ctx.(
retinfo) =
None ->
tr_instr ctx pc (
Ireturn or)
c
|
tr_return_inlined:
forall ctx pc or c rinfo,
c!(
spc ctx pc) =
Some (
inline_return ctx or rinfo) ->
ctx.(
retinfo) =
Some rinfo ->
tr_instr ctx pc (
Ireturn or)
c
with tr_funbody:
context ->
function ->
code ->
Prop :=
|
tr_funbody_intro:
forall ctx f c,
(
forall r,
In r f.(
fn_params) ->
Ple r ctx.(
mreg)) ->
(
forall pc i,
f.(
fn_code)!
pc =
Some i ->
tr_instr ctx pc i c) ->
ctx.(
mstk) =
Z.max f.(
fn_stacksize) 0 ->
(
min_alignment f.(
fn_stacksize) |
ctx.(
dstk)) ->
ctx.(
dstk) >= 0 ->
ctx.(
dstk) +
ctx.(
mstk) <=
stacksize ->
tr_funbody ctx f c.
Definition fenv_agree (
fe:
funenv) :
Prop :=
forall id f,
fe!
id =
Some f ->
fenv!
id =
Some f.
Section EXPAND_INSTR.
Variable fe:
funenv.
Hypothesis FE:
fenv_agree fe.
Variable rec:
forall fe', (
size_fenv fe' <
size_fenv fe)%
nat ->
context ->
function ->
mon unit.
Hypothesis rec_unchanged:
forall fe' (
L: (
size_fenv fe' <
size_fenv fe)%
nat)
ctx f s x s' i pc,
rec fe' L ctx f s =
R x s' i ->
Ple ctx.(
dpc)
s.(
st_nextnode) ->
Plt pc ctx.(
dpc) ->
s'.(
st_code)!
pc =
s.(
st_code)!
pc.
Remark set_instr_other:
forall pc instr s x s' i pc',
set_instr pc instr s =
R x s' i ->
pc' <>
pc ->
s'.(
st_code)!
pc' =
s.(
st_code)!
pc'.
Proof.
intros.
monadInv H;
simpl.
apply PTree.gso;
auto.
Qed.
Remark set_instr_same:
forall pc instr s x s' i c,
set_instr pc instr s =
R x s' i ->
c!(
pc) =
s'.(
st_code)!
pc ->
c!(
pc) =
Some instr.
Proof.
intros.
rewrite H0.
monadInv H;
simpl.
apply PTree.gss.
Qed.
Lemma expand_instr_unchanged:
forall ctx pc instr s x s' i pc',
expand_instr fe rec ctx pc instr s =
R x s' i ->
Ple ctx.(
dpc)
s.(
st_nextnode) ->
Plt pc' s.(
st_nextnode) ->
pc' <>
spc ctx pc ->
s'.(
st_code)!
pc' =
s.(
st_code)!
pc'.
Proof.
generalize set_instr_other;
intros A.
intros.
unfold expand_instr in H;
destruct instr;
eauto.
destruct (
can_inline fe s1).
eauto.
monadInv H.
unfold inline_function in EQ.
monadInv EQ.
transitivity (
s2.(
st_code)!
pc').
eauto.
transitivity (
s5.(
st_code)!
pc').
eapply add_moves_unchanged;
eauto.
left.
inversion INCR5.
inversion INCR3.
monadInv EQ1;
simpl in *.
extlia.
transitivity (
s4.(
st_code)!
pc').
eapply rec_unchanged;
eauto.
simpl.
monadInv EQ;
simpl.
monadInv EQ1;
simpl.
extlia.
simpl.
monadInv EQ1;
simpl.
auto.
monadInv EQ;
simpl.
monadInv EQ1;
simpl.
auto.
destruct (
can_inline fe s1).
destruct (
retinfo ctx)
as [[
rpc rreg]|];
eauto.
monadInv H.
unfold inline_tail_function in EQ.
monadInv EQ.
transitivity (
s2.(
st_code)!
pc').
eauto.
transitivity (
s5.(
st_code)!
pc').
eapply add_moves_unchanged;
eauto.
left.
inversion INCR5.
inversion INCR3.
monadInv EQ1;
simpl in *.
extlia.
transitivity (
s4.(
st_code)!
pc').
eapply rec_unchanged;
eauto.
simpl.
monadInv EQ;
simpl.
monadInv EQ1;
simpl.
extlia.
simpl.
monadInv EQ1;
simpl.
auto.
monadInv EQ;
simpl.
monadInv EQ1;
simpl.
auto.
destruct (
retinfo ctx)
as [[
rpc rreg]|];
eauto.
Qed.
Lemma iter_expand_instr_unchanged:
forall ctx pc l s x s' i,
mlist_iter2 (
expand_instr fe rec ctx)
l s =
R x s' i ->
Ple ctx.(
dpc)
s.(
st_nextnode) ->
Plt pc s.(
st_nextnode) ->
~
In pc (
List.map (
spc ctx) (
List.map (@
fst _ _)
l)) ->
list_norepet (
List.map (@
fst _ _)
l) ->
s'.(
st_code)!
pc =
s.(
st_code)!
pc.
Proof.
induction l;
simpl;
intros.
monadInv H.
auto.
destruct a as [
pc1 instr1];
simpl in *.
monadInv H.
inv H3.
transitivity ((
st_code s0)!
pc).
eapply IHl;
eauto.
destruct INCR;
extlia.
destruct INCR;
extlia.
eapply expand_instr_unchanged;
eauto.
Qed.
Lemma expand_cfg_rec_unchanged:
forall ctx f s x s' i pc,
expand_cfg_rec fe rec ctx f s =
R x s' i ->
Ple ctx.(
dpc)
s.(
st_nextnode) ->
Plt pc ctx.(
dpc) ->
s'.(
st_code)!
pc =
s.(
st_code)!
pc.
Proof.
Hypothesis rec_spec:
forall fe' (
L: (
size_fenv fe' <
size_fenv fe)%
nat)
ctx f s x s' i c,
rec fe' L ctx f s =
R x s' i ->
fenv_agree fe' ->
Ple (
ctx.(
dpc) +
max_pc_function f)
s.(
st_nextnode) ->
ctx.(
mreg) =
max_reg_function f ->
Ple (
Pos.add ctx.(
dreg)
ctx.(
mreg))
s.(
st_nextreg) ->
ctx.(
mstk) >= 0 ->
ctx.(
mstk) =
Z.max (
fn_stacksize f) 0 ->
(
min_alignment (
fn_stacksize f) |
ctx.(
dstk)) ->
ctx.(
dstk) >= 0 ->
s'.(
st_stksize) <=
stacksize ->
(
forall pc,
Ple ctx.(
dpc)
pc ->
Plt pc s'.(
st_nextnode) ->
c!
pc =
s'.(
st_code)!
pc) ->
tr_funbody ctx f c.
Remark min_alignment_pos:
forall sz,
min_alignment sz > 0.
Proof.
intros;
unfold min_alignment.
destruct (
zle sz 1).
lia.
destruct (
zle sz 2).
lia.
destruct (
zle sz 4);
lia.
Qed.
Ltac inv_incr :=
match goal with
| [
H:
sincr _ _ |- _ ] =>
destruct H;
inv_incr
| _ =>
idtac
end.
Lemma expand_instr_spec:
forall ctx pc instr s x s' i c,
expand_instr fe rec ctx pc instr s =
R x s' i ->
(
forall r,
instr_defs instr =
Some r ->
Ple r ctx.(
mreg)) ->
Plt (
spc ctx pc)
s.(
st_nextnode) ->
Ple (
ctx.(
dreg) +
ctx.(
mreg))
s.(
st_nextreg) ->
ctx.(
mstk) >= 0 ->
ctx.(
dstk) >= 0 ->
s'.(
st_stksize) <=
stacksize ->
(
forall pc',
Ple s.(
st_nextnode)
pc' ->
Plt pc' s'.(
st_nextnode) ->
c!
pc' =
s'.(
st_code)!
pc') ->
c!(
spc ctx pc) =
s'.(
st_code)!(
spc ctx pc) ->
tr_instr ctx pc instr c.
Proof.
Lemma iter_expand_instr_spec:
forall ctx l s x s' i c,
mlist_iter2 (
expand_instr fe rec ctx)
l s =
R x s' i ->
list_norepet (
List.map (@
fst _ _)
l) ->
(
forall pc instr r,
In (
pc,
instr)
l ->
instr_defs instr =
Some r ->
Ple r ctx.(
mreg)) ->
(
forall pc instr,
In (
pc,
instr)
l ->
Plt (
spc ctx pc)
s.(
st_nextnode)) ->
Ple (
ctx.(
dreg) +
ctx.(
mreg))
s.(
st_nextreg) ->
ctx.(
mstk) >= 0 ->
ctx.(
dstk) >= 0 ->
s'.(
st_stksize) <=
stacksize ->
(
forall pc',
Ple s.(
st_nextnode)
pc' ->
Plt pc' s'.(
st_nextnode) ->
c!
pc' =
s'.(
st_code)!
pc') ->
(
forall pc instr,
In (
pc,
instr)
l ->
c!(
spc ctx pc) =
s'.(
st_code)!(
spc ctx pc)) ->
forall pc instr,
In (
pc,
instr)
l ->
tr_instr ctx pc instr c.
Proof.
Lemma expand_cfg_rec_spec:
forall ctx f s x s' i c,
expand_cfg_rec fe rec ctx f s =
R x s' i ->
Ple (
ctx.(
dpc) +
max_pc_function f)
s.(
st_nextnode) ->
ctx.(
mreg) =
max_reg_function f ->
Ple (
ctx.(
dreg) +
ctx.(
mreg))
s.(
st_nextreg) ->
ctx.(
mstk) >= 0 ->
ctx.(
mstk) =
Z.max (
fn_stacksize f) 0 ->
(
min_alignment (
fn_stacksize f) |
ctx.(
dstk)) ->
ctx.(
dstk) >= 0 ->
s'.(
st_stksize) <=
stacksize ->
(
forall pc',
Ple ctx.(
dpc)
pc' ->
Plt pc' s'.(
st_nextnode) ->
c!
pc' =
s'.(
st_code)!
pc') ->
tr_funbody ctx f c.
Proof.
End EXPAND_INSTR.
Lemma expand_cfg_unchanged:
forall fe ctx f s x s' i pc,
expand_cfg fe ctx f s =
R x s' i ->
Ple ctx.(
dpc)
s.(
st_nextnode) ->
Plt pc ctx.(
dpc) ->
s'.(
st_code)!
pc =
s.(
st_code)!
pc.
Proof.
Lemma expand_cfg_spec:
forall fe ctx f s x s' i c,
expand_cfg fe ctx f s =
R x s' i ->
fenv_agree fe ->
Ple (
ctx.(
dpc) +
max_pc_function f)
s.(
st_nextnode) ->
ctx.(
mreg) =
max_reg_function f ->
Ple (
ctx.(
dreg) +
ctx.(
mreg))
s.(
st_nextreg) ->
ctx.(
mstk) >= 0 ->
ctx.(
mstk) =
Z.max (
fn_stacksize f) 0 ->
(
min_alignment (
fn_stacksize f) |
ctx.(
dstk)) ->
ctx.(
dstk) >= 0 ->
s'.(
st_stksize) <=
stacksize ->
(
forall pc',
Ple ctx.(
dpc)
pc' ->
Plt pc' s'.(
st_nextnode) ->
c!
pc' =
s'.(
st_code)!
pc') ->
tr_funbody ctx f c.
Proof.
End INLINING_BODY_SPEC.
End INLINING_SPEC.
Relational specification of the translation of a function
Inductive tr_function:
program ->
function ->
function ->
Prop :=
|
tr_function_intro:
forall p fenv f f' ctx,
fenv_compat p fenv ->
tr_funbody fenv f'.(
fn_stacksize)
ctx f f'.(
fn_code) ->
ctx.(
dstk) = 0 ->
ctx.(
retinfo) =
None ->
f'.(
fn_sig) =
f.(
fn_sig) ->
f'.(
fn_params) =
sregs ctx f.(
fn_params) ->
f'.(
fn_entrypoint) =
spc ctx f.(
fn_entrypoint) ->
0 <=
fn_stacksize f' <
Ptrofs.max_unsigned ->
tr_function p f f'.
Lemma tr_function_linkorder:
forall cunit prog f f',
linkorder cunit prog ->
tr_function cunit f f' ->
tr_function prog f f'.
Proof.
Lemma transf_function_spec:
forall cunit f f',
transf_function (
funenv_program cunit)
f =
OK f' ->
tr_function cunit f f'.
Proof.