Abstract specification of RTL generation
In this module, we define inductive predicates that specify the
translations from Cminor to RTL performed by the functions in module
RTLgen. We then show that these functions satisfy these relational
specifications. The relational specifications will then be used
instead of the actual functions to show semantic equivalence between
the source Cminor code and the the generated RTL code
(see module RTLgenproof).
Require Import Coqlib.
Require Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Switch.
Require Import Op.
Require Import Registers.
Require Import CminorSel.
Require Import RTL.
Require Import RTLgen.
Reasoning about monadic computations
The tactics below simplify hypotheses of the form f ... = OK x s i
where f is a monadic computation. For instance, the hypothesis
(do x <- a; b) s = OK y s' i will generate the additional witnesses
x, s1, i1, i' and the additional hypotheses
a s = OK x s1 i1 and b x s1 = OK y s' i', reflecting the fact that
both monadic computations a and b succeeded.
Remark bind_inversion:
forall (
A B:
Type) (
f:
mon A) (
g:
A ->
mon B)
(
y:
B) (
s1 s3:
state) (
i:
state_incr s1 s3),
bind f g s1 =
OK y s3 i ->
exists x,
exists s2,
exists i1,
exists i2,
f s1 =
OK x s2 i1 /\
g x s2 =
OK y s3 i2.
Proof.
intros until i.
unfold bind.
destruct (
f s1);
intros.
discriminate.
exists a;
exists s';
exists s.
destruct (
g a s');
inv H.
exists s0;
auto.
Qed.
Remark bind2_inversion:
forall (
A B C:
Type) (
f:
mon (
A*
B)) (
g:
A ->
B ->
mon C)
(
z:
C) (
s1 s3:
state) (
i:
state_incr s1 s3),
bind2 f g s1 =
OK z s3 i ->
exists x,
exists y,
exists s2,
exists i1,
exists i2,
f s1 =
OK (
x,
y)
s2 i1 /\
g x y s2 =
OK z s3 i2.
Proof.
unfold bind2;
intros.
exploit bind_inversion;
eauto.
intros [[
x y] [
s2 [
i1 [
i2 [
P Q]]]]].
simpl in Q.
exists x;
exists y;
exists s2;
exists i1;
exists i2;
auto.
Qed.
Ltac monadInv1 H :=
match type of H with
| (
OK _ _ _ =
OK _ _ _) =>
inversion H;
clear H;
try subst
| (
Error _ _ =
OK _ _ _) =>
discriminate
| (
ret _ _ =
OK _ _ _) =>
inversion H;
clear H;
try subst
| (
error _ _ =
OK _ _ _) =>
discriminate
| (
bind ?
F ?
G ?
S =
OK ?
X ?
S' ?
I) =>
let x :=
fresh "x" in (
let s :=
fresh "s" in (
let i1 :=
fresh "INCR" in (
let i2 :=
fresh "INCR" in (
let EQ1 :=
fresh "EQ" in (
let EQ2 :=
fresh "EQ" in (
destruct (
bind_inversion _ _
F G X S S' I H)
as [
x [
s [
i1 [
i2 [
EQ1 EQ2]]]]];
clear H;
try (
monadInv1 EQ2)))))))
| (
bind2 ?
F ?
G ?
S =
OK ?
X ?
S' ?
I) =>
let x1 :=
fresh "x" in (
let x2 :=
fresh "x" in (
let s :=
fresh "s" in (
let i1 :=
fresh "INCR" in (
let i2 :=
fresh "INCR" in (
let EQ1 :=
fresh "EQ" in (
let EQ2 :=
fresh "EQ" in (
destruct (
bind2_inversion _ _ _
F G X S S' I H)
as [
x1 [
x2 [
s [
i1 [
i2 [
EQ1 EQ2]]]]]];
clear H;
try (
monadInv1 EQ2))))))))
end.
Ltac monadInv H :=
match type of H with
| (
ret _ _ =
OK _ _ _) =>
monadInv1 H
| (
error _ _ =
OK _ _ _) =>
monadInv1 H
| (
bind ?
F ?
G ?
S =
OK ?
X ?
S' ?
I) =>
monadInv1 H
| (
bind2 ?
F ?
G ?
S =
OK ?
X ?
S' ?
I) =>
monadInv1 H
| (?
F _ _ _ _ _ _ _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ _ _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
| (?
F _ =
OK _ _ _) =>
((
progress simpl in H) ||
unfold F in H);
monadInv1 H
end.
Monotonicity properties of the state
Global Hint Resolve state_incr_refl:
rtlg.
Lemma instr_at_incr:
forall s1 s2 n i,
state_incr s1 s2 ->
s1.(
st_code)!
n =
Some i ->
s2.(
st_code)!
n =
Some i.
Proof.
intros. inv H.
destruct (H3 n); congruence.
Qed.
Global Hint Resolve instr_at_incr:
rtlg.
The following tactic saturates the hypotheses with
state_incr properties that follow by transitivity from
the known hypotheses.
Ltac saturateTrans :=
match goal with
|
H1:
state_incr ?
x ?
y,
H2:
state_incr ?
y ?
z |- _ =>
match goal with
|
H:
state_incr x z |- _ =>
fail 1
| _ =>
let i :=
fresh "INCR" in
(
generalize (
state_incr_trans x y z H1 H2);
intro i;
saturateTrans)
end
| _ =>
idtac
end.
Validity and freshness of registers
An RTL pseudo-register is valid in a given state if it was created
earlier, that is, it is less than the next fresh register of the state.
Otherwise, the pseudo-register is said to be fresh.
Definition reg_valid (
r:
reg) (
s:
state) :
Prop :=
Plt r s.(
st_nextreg).
Definition reg_fresh (
r:
reg) (
s:
state) :
Prop :=
~(
Plt r s.(
st_nextreg)).
Lemma valid_fresh_absurd:
forall r s,
reg_valid r s ->
reg_fresh r s ->
False.
Proof.
Global Hint Resolve valid_fresh_absurd:
rtlg.
Lemma valid_fresh_different:
forall r1 r2 s,
reg_valid r1 s ->
reg_fresh r2 s ->
r1 <>
r2.
Proof.
unfold not;
intros.
subst r2.
eauto with rtlg.
Qed.
Global Hint Resolve valid_fresh_different:
rtlg.
Lemma reg_valid_incr:
forall r s1 s2,
state_incr s1 s2 ->
reg_valid r s1 ->
reg_valid r s2.
Proof.
Global Hint Resolve reg_valid_incr:
rtlg.
Lemma reg_fresh_decr:
forall r s1 s2,
state_incr s1 s2 ->
reg_fresh r s2 ->
reg_fresh r s1.
Proof.
Global Hint Resolve reg_fresh_decr:
rtlg.
Validity of a list of registers.
Definition regs_valid (
rl:
list reg) (
s:
state) :
Prop :=
forall r,
In r rl ->
reg_valid r s.
Lemma regs_valid_nil:
forall s,
regs_valid nil s.
Proof.
intros; red; intros. elim H.
Qed.
Global Hint Resolve regs_valid_nil:
rtlg.
Lemma regs_valid_cons:
forall r1 rl s,
reg_valid r1 s ->
regs_valid rl s ->
regs_valid (
r1 ::
rl)
s.
Proof.
intros; red; intros. elim H1; intro. subst r1; auto. auto.
Qed.
Lemma regs_valid_app:
forall rl1 rl2 s,
regs_valid rl1 s ->
regs_valid rl2 s ->
regs_valid (
rl1 ++
rl2)
s.
Proof.
intros;
red;
intros.
apply in_app_iff in H1.
destruct H1;
auto.
Qed.
Lemma regs_valid_incr:
forall s1 s2 rl,
state_incr s1 s2 ->
regs_valid rl s1 ->
regs_valid rl s2.
Proof.
Global Hint Resolve regs_valid_incr:
rtlg.
A register is ``in'' a mapping if it is associated with a Cminor
local or let-bound variable.
Definition reg_in_map (
m:
mapping) (
r:
reg) :
Prop :=
(
exists id,
m.(
map_vars)!
id =
Some r) \/
In r m.(
map_letvars).
A compilation environment (mapping) is valid in a given state if
the registers associated with Cminor local variables and let-bound variables
are valid in the state.
Definition map_valid (
m:
mapping) (
s:
state) :
Prop :=
forall r,
reg_in_map m r ->
reg_valid r s.
Lemma map_valid_incr:
forall s1 s2 m,
state_incr s1 s2 ->
map_valid m s1 ->
map_valid m s2.
Proof.
unfold map_valid;
intros;
eauto with rtlg.
Qed.
Global Hint Resolve map_valid_incr:
rtlg.
Properties of basic operations over the state
Properties of add_instr.
Lemma add_instr_at:
forall s1 s2 incr i n,
add_instr i s1 =
OK n s2 incr ->
s2.(
st_code)!
n =
Some i.
Proof.
intros.
monadInv H.
simpl.
apply PTree.gss.
Qed.
Global Hint Resolve add_instr_at:
rtlg.
Properties of update_instr.
Lemma update_instr_at:
forall n i s1 s2 incr u,
update_instr n i s1 =
OK u s2 incr ->
s2.(
st_code)!
n =
Some i.
Proof.
Global Hint Resolve update_instr_at:
rtlg.
Properties of new_reg.
Lemma new_reg_valid:
forall s1 s2 r i,
new_reg s1 =
OK r s2 i ->
reg_valid r s2.
Proof.
Global Hint Resolve new_reg_valid:
rtlg.
Lemma new_reg_fresh:
forall s1 s2 r i,
new_reg s1 =
OK r s2 i ->
reg_fresh r s1.
Proof.
Global Hint Resolve new_reg_fresh:
rtlg.
Lemma new_reg_not_in_map:
forall s1 s2 m r i,
new_reg s1 =
OK r s2 i ->
map_valid m s1 -> ~(
reg_in_map m r).
Proof.
unfold not;
intros;
eauto with rtlg.
Qed.
Global Hint Resolve new_reg_not_in_map:
rtlg.
Properties of operations over compilation environments
Lemma init_mapping_valid:
forall s,
map_valid init_mapping s.
Proof.
Properties of find_var.
Lemma find_var_in_map:
forall s1 s2 map name r i,
find_var map name s1 =
OK r s2 i ->
reg_in_map map r.
Proof.
intros until r.
unfold find_var;
caseEq (
map.(
map_vars)!
name).
intros.
inv H0.
left;
exists name;
auto.
intros.
inv H0.
Qed.
Global Hint Resolve find_var_in_map:
rtlg.
Lemma find_var_valid:
forall s1 s2 map name r i,
find_var map name s1 =
OK r s2 i ->
map_valid map s1 ->
reg_valid r s1.
Proof.
eauto with rtlg.
Qed.
Global Hint Resolve find_var_valid:
rtlg.
Properties of find_letvar.
Lemma find_letvar_in_map:
forall s1 s2 map idx r i,
find_letvar map idx s1 =
OK r s2 i ->
reg_in_map map r.
Proof.
Global Hint Resolve find_letvar_in_map:
rtlg.
Lemma find_letvar_valid:
forall s1 s2 map idx r i,
find_letvar map idx s1 =
OK r s2 i ->
map_valid map s1 ->
reg_valid r s1.
Proof.
eauto with rtlg.
Qed.
Global Hint Resolve find_letvar_valid:
rtlg.
Properties of add_var.
Lemma add_var_valid:
forall s1 s2 map1 map2 name r i,
add_var map1 name s1 =
OK (
r,
map2)
s2 i ->
map_valid map1 s1 ->
reg_valid r s2 /\
map_valid map2 s2.
Proof.
intros.
monadInv H.
split.
eauto with rtlg.
inversion EQ.
subst.
red.
intros r' [[
id A] |
B].
simpl in A.
rewrite PTree.gsspec in A.
destruct (
peq id name).
inv A.
eauto with rtlg.
apply reg_valid_incr with s1.
eauto with rtlg.
apply H0.
left;
exists id;
auto.
simpl in B.
apply reg_valid_incr with s1.
eauto with rtlg.
apply H0.
right;
auto.
Qed.
Lemma add_var_find:
forall s1 s2 map name r map' i,
add_var map name s1 =
OK (
r,
map')
s2 i ->
map'.(
map_vars)!
name =
Some r.
Proof.
intros.
monadInv H.
simpl.
apply PTree.gss.
Qed.
Lemma add_vars_valid:
forall namel s1 s2 map1 map2 rl i,
add_vars map1 namel s1 =
OK (
rl,
map2)
s2 i ->
map_valid map1 s1 ->
regs_valid rl s2 /\
map_valid map2 s2.
Proof.
induction namel;
simpl;
intros;
monadInv H.
split.
red;
simpl;
intros;
tauto.
auto.
exploit IHnamel;
eauto.
intros [
A B].
exploit add_var_valid;
eauto.
intros [
C D].
split.
apply regs_valid_cons;
eauto with rtlg.
auto.
Qed.
Lemma add_var_letenv:
forall map1 id s1 r map2 s2 i,
add_var map1 id s1 =
OK (
r,
map2)
s2 i ->
map2.(
map_letvars) =
map1.(
map_letvars).
Proof.
intros; monadInv H. reflexivity.
Qed.
Lemma add_vars_letenv:
forall il map1 s1 rl map2 s2 i,
add_vars map1 il s1 =
OK (
rl,
map2)
s2 i ->
map2.(
map_letvars) =
map1.(
map_letvars).
Proof.
induction il;
simpl;
intros;
monadInv H.
reflexivity.
transitivity (
map_letvars x0).
eapply add_var_letenv;
eauto.
eauto.
Qed.
Properties of add_letvar.
Lemma add_letvar_valid:
forall map s r,
map_valid map s ->
reg_valid r s ->
map_valid (
add_letvar map r)
s.
Proof.
intros; red; intros.
destruct H1 as [[id A]|B].
simpl in A. apply H. left; exists id; auto.
simpl in B. elim B; intro.
subst r0; auto. apply H. right; auto.
Qed.
Properties of alloc_reg and alloc_regs
Lemma alloc_reg_valid:
forall a s1 s2 map r i,
map_valid map s1 ->
alloc_reg map a s1 =
OK r s2 i ->
reg_valid r s2.
Proof.
intros until r.
unfold alloc_reg.
case a;
eauto with rtlg.
Qed.
Global Hint Resolve alloc_reg_valid:
rtlg.
Lemma alloc_reg_fresh_or_in_map:
forall map a s r s' i,
map_valid map s ->
alloc_reg map a s =
OK r s' i ->
reg_in_map map r \/
reg_fresh r s.
Proof.
intros until s'.
unfold alloc_reg.
destruct a;
intros;
try (
right;
eauto with rtlg;
fail).
left;
eauto with rtlg.
left;
eauto with rtlg.
Qed.
Lemma alloc_regs_valid:
forall al s1 s2 map rl i,
map_valid map s1 ->
alloc_regs map al s1 =
OK rl s2 i ->
regs_valid rl s2.
Proof.
Global Hint Resolve alloc_regs_valid:
rtlg.
Lemma alloc_regs_fresh_or_in_map:
forall map al s rl s' i,
map_valid map s ->
alloc_regs map al s =
OK rl s' i ->
forall r,
In r rl ->
reg_in_map map r \/
reg_fresh r s.
Proof.
induction al;
simpl;
intros;
monadInv H0.
elim H1.
elim H1;
intro.
subst r.
eapply alloc_reg_fresh_or_in_map;
eauto.
exploit IHal. 2:
eauto.
apply map_valid_incr with s;
eauto with rtlg.
eauto.
intros [
A|
B].
auto.
right;
eauto with rtlg.
Qed.
Lemma alloc_optreg_valid:
forall dest s1 s2 map r i,
map_valid map s1 ->
alloc_optreg map dest s1 =
OK r s2 i ->
reg_valid r s2.
Proof.
intros until r.
unfold alloc_reg.
case dest;
eauto with rtlg.
Qed.
Global Hint Resolve alloc_optreg_valid:
rtlg.
Lemma alloc_optreg_fresh_or_in_map:
forall map dest s r s' i,
map_valid map s ->
alloc_optreg map dest s =
OK r s' i ->
reg_in_map map r \/
reg_fresh r s.
Proof.
intros until s'.
unfold alloc_optreg.
destruct dest;
intros.
left;
eauto with rtlg.
right;
eauto with rtlg.
Qed.
A register is an adequate target for holding the value of an
expression if
-
either the register is associated with a Cminor let-bound variable
or a Cminor local variable;
-
or the register is not associated with any Cminor variable
and does not belong to the preserved set pr.
Inductive target_reg_ok (
map:
mapping) (
pr:
list reg):
expr ->
reg ->
Prop :=
|
target_reg_var:
forall id r,
map.(
map_vars)!
id =
Some r ->
target_reg_ok map pr (
Evar id)
r
|
target_reg_letvar:
forall idx r,
nth_error map.(
map_letvars)
idx =
Some r ->
target_reg_ok map pr (
Eletvar idx)
r
|
target_reg_other:
forall a r,
~(
reg_in_map map r) -> ~
In r pr ->
target_reg_ok map pr a r.
Inductive target_regs_ok (
map:
mapping) (
pr:
list reg):
exprlist ->
list reg ->
Prop :=
|
target_regs_nil:
target_regs_ok map pr Enil nil
|
target_regs_cons:
forall a1 al r1 rl,
target_reg_ok map pr a1 r1 ->
target_regs_ok map (
r1 ::
pr)
al rl ->
target_regs_ok map pr (
Econs a1 al) (
r1 ::
rl).
Lemma target_reg_ok_append:
forall map pr a r,
target_reg_ok map pr a r ->
forall pr',
(
forall r',
In r' pr' ->
reg_in_map map r' \/
r' <>
r) ->
target_reg_ok map (
pr' ++
pr)
a r.
Proof.
induction 1;
intros.
constructor;
auto.
constructor;
auto.
constructor;
auto.
red;
intros.
elim (
in_app_or _ _ _
H2);
intro.
generalize (
H1 _
H3).
tauto.
tauto.
Qed.
Lemma target_reg_ok_cons:
forall map pr a r,
target_reg_ok map pr a r ->
forall r',
reg_in_map map r' \/
r' <>
r ->
target_reg_ok map (
r' ::
pr)
a r.
Proof.
intros.
change (
r' ::
pr)
with ((
r' ::
nil) ++
pr).
apply target_reg_ok_append;
auto.
intros r'' [
A|
B].
subst r'';
auto.
contradiction.
Qed.
Lemma new_reg_target_ok:
forall map pr s1 a r s2 i,
map_valid map s1 ->
regs_valid pr s1 ->
new_reg s1 =
OK r s2 i ->
target_reg_ok map pr a r.
Proof.
Lemma alloc_reg_target_ok:
forall map pr s1 a r s2 i,
map_valid map s1 ->
regs_valid pr s1 ->
alloc_reg map a s1 =
OK r s2 i ->
target_reg_ok map pr a r.
Proof.
Lemma alloc_regs_target_ok:
forall map al pr s1 rl s2 i,
map_valid map s1 ->
regs_valid pr s1 ->
alloc_regs map al s1 =
OK rl s2 i ->
target_regs_ok map pr al rl.
Proof.
induction al;
intros;
monadInv H1.
constructor.
constructor.
eapply alloc_reg_target_ok;
eauto.
apply IHal with s s2 INCR1;
eauto with rtlg.
apply regs_valid_cons;
eauto with rtlg.
Qed.
Global Hint Resolve new_reg_target_ok alloc_reg_target_ok
alloc_regs_target_ok:
rtlg.
The following predicate is a variant of target_reg_ok used
to characterize registers that are adequate for holding the return
value of a function.
Inductive return_reg_ok:
state ->
mapping ->
option reg ->
Prop :=
|
return_reg_ok_none:
forall s map,
return_reg_ok s map None
|
return_reg_ok_some:
forall s map r,
~(
reg_in_map map r) ->
reg_valid r s ->
return_reg_ok s map (
Some r).
Lemma return_reg_ok_incr:
forall s map rret,
return_reg_ok s map rret ->
forall s',
state_incr s s' ->
return_reg_ok s' map rret.
Proof.
induction 1; intros; econstructor; eauto with rtlg.
Qed.
Global Hint Resolve return_reg_ok_incr:
rtlg.
Lemma new_reg_return_ok:
forall s1 r s2 map sig i,
new_reg s1 =
OK r s2 i ->
map_valid map s1 ->
return_reg_ok s2 map (
ret_reg sig r).
Proof.
Relational specification of the translation
We now define inductive predicates that characterize the fact that
the control-flow graph produced by compilation of a Cminor function
contains sub-graphs that correspond to the translation of each
Cminor expression or statement in the original code.
tr_move c ns rs nd rd holds if the graph c, between nodes ns
and nd, contains instructions that move the value of register rs
to register rd.
Inductive tr_move (
c:
code):
node ->
reg ->
node ->
reg ->
Prop :=
|
tr_move_0:
forall n r,
tr_move c n r n r
|
tr_move_1:
forall ns rs nd rd,
c!
ns =
Some (
Iop Omove (
rs ::
nil)
rd nd) ->
tr_move c ns rs nd rd.
reg_map_ok map r optid characterizes the destination register
for an expression: if optid is None, the destination is
a fresh register (not associated with any variable);
if optid is Some id, the destination is the register
associated with local variable id.
Inductive reg_map_ok:
mapping ->
reg ->
option ident ->
Prop :=
|
reg_map_ok_novar:
forall map rd,
~
reg_in_map map rd ->
reg_map_ok map rd None
|
reg_map_ok_somevar:
forall map rd id,
map.(
map_vars)!
id =
Some rd ->
reg_map_ok map rd (
Some id).
Global Hint Resolve reg_map_ok_novar:
rtlg.
tr_expr c map pr expr ns nd rd optid holds if the graph c,
between nodes ns and nd, contains instructions that compute the
value of the CminorSel expression expr and deposit this value in
register rd. map is a mapping from Cminor variables to the
corresponding RTL registers. pr is a list of RTL registers whose
values must be preserved during this computation. All registers
mentioned in map must also be preserved during this computation.
(Exception: if optid = Some id, the register associated with
local variable id can be assigned, but only at the end of the
expression evaluation.)
To ensure this property, we demand that the result registers of the
instructions appearing on the path from ns to nd are not in pr,
and moreover that they satisfy the reg_map_ok predicate.
Inductive tr_expr (
c:
code):
mapping ->
list reg ->
expr ->
node ->
node ->
reg ->
option ident ->
Prop :=
|
tr_Evar:
forall map pr id ns nd r rd dst,
map.(
map_vars)!
id =
Some r ->
((
rd =
r /\
dst =
None) \/ (
reg_map_ok map rd dst /\ ~
In rd pr)) ->
tr_move c ns r nd rd ->
tr_expr c map pr (
Evar id)
ns nd rd dst
|
tr_Eop:
forall map pr op al ns nd rd n1 rl dst,
tr_exprlist c map pr al ns n1 rl ->
c!
n1 =
Some (
Iop op rl rd nd) ->
reg_map_ok map rd dst -> ~
In rd pr ->
tr_expr c map pr (
Eop op al)
ns nd rd dst
|
tr_Eload:
forall map pr chunk addr al ns nd rd n1 rl dst,
tr_exprlist c map pr al ns n1 rl ->
c!
n1 =
Some (
Iload chunk addr rl rd nd) ->
reg_map_ok map rd dst -> ~
In rd pr ->
tr_expr c map pr (
Eload chunk addr al)
ns nd rd dst
|
tr_Econdition:
forall map pr a ifso ifnot ns nd rd ntrue nfalse dst,
tr_condition c map pr a ns ntrue nfalse ->
tr_expr c map pr ifso ntrue nd rd dst ->
tr_expr c map pr ifnot nfalse nd rd dst ->
tr_expr c map pr (
Econdition a ifso ifnot)
ns nd rd dst
|
tr_Elet:
forall map pr b1 b2 ns nd rd n1 r dst,
~
reg_in_map map r ->
tr_expr c map pr b1 ns n1 r None ->
tr_expr c (
add_letvar map r)
pr b2 n1 nd rd dst ->
tr_expr c map pr (
Elet b1 b2)
ns nd rd dst
|
tr_Eletvar:
forall map pr n ns nd rd r dst,
List.nth_error map.(
map_letvars)
n =
Some r ->
((
rd =
r /\
dst =
None) \/ (
reg_map_ok map rd dst /\ ~
In rd pr)) ->
tr_move c ns r nd rd ->
tr_expr c map pr (
Eletvar n)
ns nd rd dst
|
tr_Ebuiltin:
forall map pr ef al ns nd rd dst n1 rl,
tr_exprlist c map pr al ns n1 rl ->
c!
n1 =
Some (
Ibuiltin ef (
List.map (@
BA reg)
rl) (
BR rd)
nd) ->
reg_map_ok map rd dst -> ~
In rd pr ->
tr_expr c map pr (
Ebuiltin ef al)
ns nd rd dst
|
tr_Eexternal:
forall map pr id sg al ns nd rd dst n1 rl,
tr_exprlist c map pr al ns n1 rl ->
c!
n1 =
Some (
Icall sg (
inr _
id)
rl rd nd) ->
reg_map_ok map rd dst -> ~
In rd pr ->
tr_expr c map pr (
Eexternal id sg al)
ns nd rd dst
tr_condition c map pr a ns ntrue nfalse holds if the graph c,
starting at node ns, contains instructions that compute the truth
value of the CminorSel conditional expression a and terminate
on node ntrue if the condition holds and on node nfalse otherwise.
with tr_condition (
c:
code):
mapping ->
list reg ->
condexpr ->
node ->
node ->
node ->
Prop :=
|
tr_CEcond:
forall map pr cond bl ns ntrue nfalse n1 rl,
tr_exprlist c map pr bl ns n1 rl ->
c!
n1 =
Some (
Icond cond rl ntrue nfalse) ->
tr_condition c map pr (
CEcond cond bl)
ns ntrue nfalse
|
tr_CEcondition:
forall map pr a1 a2 a3 ns ntrue nfalse n2 n3,
tr_condition c map pr a1 ns n2 n3 ->
tr_condition c map pr a2 n2 ntrue nfalse ->
tr_condition c map pr a3 n3 ntrue nfalse ->
tr_condition c map pr (
CEcondition a1 a2 a3)
ns ntrue nfalse
|
tr_CElet:
forall map pr a b ns ntrue nfalse r n1,
~
reg_in_map map r ->
tr_expr c map pr a ns n1 r None ->
tr_condition c (
add_letvar map r)
pr b n1 ntrue nfalse ->
tr_condition c map pr (
CElet a b)
ns ntrue nfalse
tr_exprlist c map pr exprs ns nd rds holds if the graph c,
between nodes ns and nd, contains instructions that compute the values
of the list of CminorSel expression exprlist and deposit these values
in registers rds.
with tr_exprlist (
c:
code):
mapping ->
list reg ->
exprlist ->
node ->
node ->
list reg ->
Prop :=
|
tr_Enil:
forall map pr n,
tr_exprlist c map pr Enil n n nil
|
tr_Econs:
forall map pr a1 al ns nd r1 rl n1,
tr_expr c map pr a1 ns n1 r1 None ->
tr_exprlist c map (
r1 ::
pr)
al n1 nd rl ->
tr_exprlist c map pr (
Econs a1 al)
ns nd (
r1 ::
rl).
Auxiliary for the compilation of switch statements.
Definition tr_jumptable (
nexits:
list node) (
tbl:
list nat) (
ttbl:
list node) :
Prop :=
forall v act,
list_nth_z tbl v =
Some act ->
exists n,
list_nth_z ttbl v =
Some n /\
nth_error nexits act =
Some n.
tr_exitexpr c map pr a ns nexits holds if the graph c,
starting at node ns, contains instructions that compute the exit
number of the CminorSel exit expression a and terminate
on the node corresponding to this exit number according to the
mapping nexits.
Inductive tr_exitexpr (
c:
code):
mapping ->
exitexpr ->
node ->
list node ->
Prop :=
|
tr_XEcond:
forall map x n nexits,
nth_error nexits x =
Some n ->
tr_exitexpr c map (
XEexit x)
n nexits
|
tr_XEjumptable:
forall map a tbl ns nexits n1 r tbl',
tr_jumptable nexits tbl tbl' ->
tr_expr c map nil a ns n1 r None ->
c!
n1 =
Some (
Ijumptable r tbl') ->
tr_exitexpr c map (
XEjumptable a tbl)
ns nexits
|
tr_XEcondition:
forall map a1 a2 a3 ns nexits n2 n3,
tr_condition c map nil a1 ns n2 n3 ->
tr_exitexpr c map a2 n2 nexits ->
tr_exitexpr c map a3 n3 nexits ->
tr_exitexpr c map (
XEcondition a1 a2 a3)
ns nexits
|
tr_XElet:
forall map a b ns nexits r n1,
~
reg_in_map map r ->
tr_expr c map nil a ns n1 r None ->
tr_exitexpr c (
add_letvar map r)
b n1 nexits ->
tr_exitexpr c map (
XElet a b)
ns nexits.
Auxiliary for the compilation of builtin statements.
Inductive tr_builtin_res:
mapping ->
builtin_res ident ->
builtin_res reg ->
Prop :=
|
tr_builtin_res_var:
forall map id r,
map.(
map_vars)!
id =
Some r ->
tr_builtin_res map (
BR id) (
BR r)
|
tr_builtin_res_none:
forall map,
tr_builtin_res map BR_none BR_none
|
tr_builtin_res_fresh:
forall map r,
~
reg_in_map map r ->
tr_builtin_res map BR_none (
BR r).
tr_stmt c map stmt ns ncont nexits nret rret holds if the graph c,
starting at node ns, contains instructions that perform the Cminor
statement stmt. These instructions branch to node ncont if
the statement terminates normally, to the n-th node in nexits
if the statement terminates prematurely on a exit n statement,
and to nret if the statement terminates prematurely on a return
statement. Moreover, if the return statement has an argument,
its value is deposited in register rret.
Inductive tr_stmt (
c:
code) (
map:
mapping):
stmt ->
node ->
node ->
list node ->
labelmap ->
node ->
option reg ->
Prop :=
|
tr_Sskip:
forall ns nexits ngoto nret rret,
tr_stmt c map Sskip ns ns nexits ngoto nret rret
|
tr_Sassign:
forall id a ns nd nexits ngoto nret rret r,
map.(
map_vars)!
id =
Some r ->
tr_expr c map nil a ns nd r (
Some id) ->
tr_stmt c map (
Sassign id a)
ns nd nexits ngoto nret rret
|
tr_Sstore:
forall chunk addr al b ns nd nexits ngoto nret rret rd n1 rl n2,
tr_exprlist c map nil al ns n1 rl ->
tr_expr c map rl b n1 n2 rd None ->
c!
n2 =
Some (
Istore chunk addr rl rd nd) ->
tr_stmt c map (
Sstore chunk addr al b)
ns nd nexits ngoto nret rret
|
tr_Scall:
forall optid sig b cl ns nd nexits ngoto nret rret rd n1 rf n2 rargs,
tr_expr c map nil b ns n1 rf None ->
tr_exprlist c map (
rf ::
nil)
cl n1 n2 rargs ->
c!
n2 =
Some (
Icall sig (
inl _
rf)
rargs rd nd) ->
reg_map_ok map rd optid ->
tr_stmt c map (
Scall optid sig (
inl _
b)
cl)
ns nd nexits ngoto nret rret
|
tr_Scall_imm:
forall optid sig id cl ns nd nexits ngoto nret rret rd n2 rargs,
tr_exprlist c map nil cl ns n2 rargs ->
c!
n2 =
Some (
Icall sig (
inr _
id)
rargs rd nd) ->
reg_map_ok map rd optid ->
tr_stmt c map (
Scall optid sig (
inr _
id)
cl)
ns nd nexits ngoto nret rret
|
tr_Stailcall:
forall sig b cl ns nd nexits ngoto nret rret n1 rf n2 rargs,
tr_expr c map nil b ns n1 rf None ->
tr_exprlist c map (
rf ::
nil)
cl n1 n2 rargs ->
c!
n2 =
Some (
Itailcall sig (
inl _
rf)
rargs) ->
tr_stmt c map (
Stailcall sig (
inl _
b)
cl)
ns nd nexits ngoto nret rret
|
tr_Stailcall_imm:
forall sig id cl ns nd nexits ngoto nret rret n2 rargs,
tr_exprlist c map nil cl ns n2 rargs ->
c!
n2 =
Some (
Itailcall sig (
inr _
id)
rargs) ->
tr_stmt c map (
Stailcall sig (
inr _
id)
cl)
ns nd nexits ngoto nret rret
|
tr_Sbuiltin:
forall res ef args ns nd nexits ngoto nret rret res' n1 rargs,
tr_exprlist c map nil (
exprlist_of_expr_list (
params_of_builtin_args args))
ns n1 rargs ->
c!
n1 =
Some (
Ibuiltin ef (
convert_builtin_args args rargs)
res' nd) ->
tr_builtin_res map res res' ->
tr_stmt c map (
Sbuiltin res ef args)
ns nd nexits ngoto nret rret
|
tr_Sseq:
forall s1 s2 ns nd nexits ngoto nret rret n,
tr_stmt c map s2 n nd nexits ngoto nret rret ->
tr_stmt c map s1 ns n nexits ngoto nret rret ->
tr_stmt c map (
Sseq s1 s2)
ns nd nexits ngoto nret rret
|
tr_Sifthenelse:
forall a strue sfalse ns nd nexits ngoto nret rret ntrue nfalse,
tr_stmt c map strue ntrue nd nexits ngoto nret rret ->
tr_stmt c map sfalse nfalse nd nexits ngoto nret rret ->
tr_condition c map nil a ns ntrue nfalse ->
tr_stmt c map (
Sifthenelse a strue sfalse)
ns nd nexits ngoto nret rret
|
tr_Sloop:
forall sbody ns nd nexits ngoto nret rret nloop nend,
tr_stmt c map sbody nloop nend nexits ngoto nret rret ->
c!
ns =
Some(
Inop nloop) ->
c!
nend =
Some(
Inop nloop) ->
tr_stmt c map (
Sloop sbody)
ns nd nexits ngoto nret rret
|
tr_Sblock:
forall sbody ns nd nexits ngoto nret rret,
tr_stmt c map sbody ns nd (
nd ::
nexits)
ngoto nret rret ->
tr_stmt c map (
Sblock sbody)
ns nd nexits ngoto nret rret
|
tr_Sexit:
forall n ns nd nexits ngoto nret rret,
nth_error nexits n =
Some ns ->
tr_stmt c map (
Sexit n)
ns nd nexits ngoto nret rret
|
tr_Sswitch:
forall a ns nd nexits ngoto nret rret,
tr_exitexpr c map a ns nexits ->
tr_stmt c map (
Sswitch a)
ns nd nexits ngoto nret rret
|
tr_Sreturn_none:
forall nret nd nexits ngoto rret,
tr_stmt c map (
Sreturn None)
nret nd nexits ngoto nret rret
|
tr_Sreturn_some:
forall a ns nd nexits ngoto nret rret,
tr_expr c map nil a ns nret rret None ->
tr_stmt c map (
Sreturn (
Some a))
ns nd nexits ngoto nret (
Some rret)
|
tr_Slabel:
forall lbl s ns nd nexits ngoto nret rret n,
ngoto!
lbl =
Some n ->
c!
n =
Some (
Inop ns) ->
tr_stmt c map s ns nd nexits ngoto nret rret ->
tr_stmt c map (
Slabel lbl s)
ns nd nexits ngoto nret rret
|
tr_Sgoto:
forall lbl ns nd nexits ngoto nret rret,
ngoto!
lbl =
Some ns ->
tr_stmt c map (
Sgoto lbl)
ns nd nexits ngoto nret rret.
tr_function f tf specifies the RTL function tf that
RTLgen.transl_function returns.
Inductive tr_function:
CminorSel.function ->
RTL.function ->
Prop :=
|
tr_function_intro:
forall f code rparams map1 s0 s1 i1 rvars map2 s2 i2 nentry ngoto nret rret orret,
add_vars init_mapping f.(
CminorSel.fn_params)
s0 =
OK (
rparams,
map1)
s1 i1 ->
add_vars map1 f.(
CminorSel.fn_vars)
s1 =
OK (
rvars,
map2)
s2 i2 ->
orret =
ret_reg f.(
CminorSel.fn_sig)
rret ->
tr_stmt code map2 f.(
CminorSel.fn_body)
nentry nret nil ngoto nret orret ->
code!
nret =
Some(
Ireturn orret) ->
tr_function f (
RTL.mkfunction
f.(
CminorSel.fn_sig)
rparams
f.(
CminorSel.fn_stackspace)
code
nentry).
Correctness proof of the translation functions
We now show that the translation functions in module RTLgen
satisfy the specifications given above as inductive predicates.
Lemma tr_move_incr:
forall s1 s2,
state_incr s1 s2 ->
forall ns rs nd rd,
tr_move s1.(
st_code)
ns rs nd rd ->
tr_move s2.(
st_code)
ns rs nd rd.
Proof.
induction 2; econstructor; eauto with rtlg.
Qed.
Lemma tr_expr_incr:
forall s1 s2,
state_incr s1 s2 ->
forall map pr a ns nd rd dst,
tr_expr s1.(
st_code)
map pr a ns nd rd dst ->
tr_expr s2.(
st_code)
map pr a ns nd rd dst
with tr_condition_incr:
forall s1 s2,
state_incr s1 s2 ->
forall map pr a ns ntrue nfalse,
tr_condition s1.(
st_code)
map pr a ns ntrue nfalse ->
tr_condition s2.(
st_code)
map pr a ns ntrue nfalse
with tr_exprlist_incr:
forall s1 s2,
state_incr s1 s2 ->
forall map pr al ns nd rl,
tr_exprlist s1.(
st_code)
map pr al ns nd rl ->
tr_exprlist s2.(
st_code)
map pr al ns nd rl.
Proof.
intros s1 s2 EXT.
pose (
AT :=
fun pc i =>
instr_at_incr s1 s2 pc i EXT).
induction 1;
econstructor;
eauto.
eapply tr_move_incr;
eauto.
eapply tr_move_incr;
eauto.
intros s1 s2 EXT.
pose (
AT :=
fun pc i =>
instr_at_incr s1 s2 pc i EXT).
induction 1;
econstructor;
eauto.
intros s1 s2 EXT.
pose (
AT :=
fun pc i =>
instr_at_incr s1 s2 pc i EXT).
induction 1;
econstructor;
eauto.
Qed.
Lemma add_move_charact:
forall s ns rs nd rd s' i,
add_move rs rd nd s =
OK ns s' i ->
tr_move s'.(
st_code)
ns rs nd rd.
Proof.
intros.
unfold add_move in H.
destruct (
Reg.eq rs rd).
inv H.
constructor.
constructor.
eauto with rtlg.
Qed.
Lemma transl_expr_charact:
forall a map rd nd s ns s' pr INCR
(
TR:
transl_expr map a rd nd s =
OK ns s' INCR)
(
WF:
map_valid map s)
(
OK:
target_reg_ok map pr a rd)
(
VALID:
regs_valid pr s)
(
VALID2:
reg_valid rd s),
tr_expr s'.(
st_code)
map pr a ns nd rd None
with transl_exprlist_charact:
forall al map rl nd s ns s' pr INCR
(
TR:
transl_exprlist map al rl nd s =
OK ns s' INCR)
(
WF:
map_valid map s)
(
OK:
target_regs_ok map pr al rl)
(
VALID1:
regs_valid pr s)
(
VALID2:
regs_valid rl s),
tr_exprlist s'.(
st_code)
map pr al ns nd rl
with transl_condexpr_charact:
forall a map ntrue nfalse s ns s' pr INCR
(
TR:
transl_condexpr map a ntrue nfalse s =
OK ns s' INCR)
(
WF:
map_valid map s)
(
VALID:
regs_valid pr s),
tr_condition s'.(
st_code)
map pr a ns ntrue nfalse.
Proof.
induction a;
intros;
try (
monadInv TR);
saturateTrans.
generalize EQ;
unfold find_var.
caseEq (
map_vars map)!
i;
intros;
inv EQ1.
econstructor;
eauto.
inv OK.
left;
split;
congruence.
right;
eauto with rtlg.
eapply add_move_charact;
eauto.
inv OK.
econstructor;
eauto with rtlg.
eapply transl_exprlist_charact;
eauto with rtlg.
inv OK.
econstructor;
eauto with rtlg.
eapply transl_exprlist_charact;
eauto with rtlg.
inv OK.
econstructor.
eauto with rtlg.
apply tr_expr_incr with s1;
auto.
eapply transl_expr_charact;
eauto 2
with rtlg.
constructor;
auto.
apply tr_expr_incr with s0;
auto.
eapply transl_expr_charact;
eauto 2
with rtlg.
constructor;
auto.
inv OK.
econstructor.
eapply new_reg_not_in_map;
eauto with rtlg.
eapply transl_expr_charact;
eauto 3
with rtlg.
apply tr_expr_incr with s1;
auto.
eapply transl_expr_charact.
eauto.
apply add_letvar_valid;
eauto with rtlg.
constructor;
auto.
red;
unfold reg_in_map.
simpl.
intros [[
id A] | [
B |
C]].
elim H.
left;
exists id;
auto.
subst x.
apply valid_fresh_absurd with rd s.
auto.
eauto with rtlg.
elim H.
right;
auto.
eauto with rtlg.
eauto with rtlg.
generalize EQ;
unfold find_letvar.
caseEq (
nth_error (
map_letvars map)
n);
intros;
inv EQ0.
monadInv EQ1.
econstructor;
eauto with rtlg.
inv OK.
left;
split;
congruence.
right;
eauto with rtlg.
eapply add_move_charact;
eauto.
monadInv EQ1.
inv OK.
econstructor;
eauto with rtlg.
eapply transl_exprlist_charact;
eauto with rtlg.
inv OK.
econstructor;
eauto with rtlg.
eapply transl_exprlist_charact;
eauto with rtlg.
induction al;
intros;
try (
monadInv TR);
saturateTrans.
destruct rl;
inv TR.
constructor.
destruct rl;
simpl in TR;
monadInv TR.
inv OK.
econstructor.
eapply transl_expr_charact;
eauto with rtlg.
generalize (
VALID2 r (
in_eq _ _)).
eauto with rtlg.
apply tr_exprlist_incr with s0;
auto.
eapply transl_exprlist_charact;
eauto with rtlg.
apply regs_valid_cons.
apply VALID2.
auto with coqlib.
auto.
red;
intros;
apply VALID2;
auto with coqlib.
induction a;
intros;
try (
monadInv TR);
saturateTrans.
econstructor;
eauto with rtlg.
eapply transl_exprlist_charact;
eauto with rtlg.
econstructor;
eauto with rtlg.
apply tr_condition_incr with s1;
eauto with rtlg.
apply tr_condition_incr with s0;
eauto with rtlg.
econstructor;
eauto with rtlg.
eapply transl_expr_charact;
eauto with rtlg.
apply tr_condition_incr with s1;
eauto with rtlg.
eapply transl_condexpr_charact;
eauto with rtlg.
apply add_letvar_valid;
eauto with rtlg.
Qed.
A variant of transl_expr_charact, for use when the destination
register is the one associated with a variable.
Lemma transl_expr_assign_charact:
forall id a map rd nd s ns s' INCR
(
TR:
transl_expr map a rd nd s =
OK ns s' INCR)
(
WF:
map_valid map s)
(
OK:
reg_map_ok map rd (
Some id)),
tr_expr s'.(
st_code)
map nil a ns nd rd (
Some id).
Proof.
Lemma alloc_optreg_map_ok:
forall map optid s1 r s2 i,
map_valid map s1 ->
alloc_optreg map optid s1 =
OK r s2 i ->
reg_map_ok map r optid.
Proof.
Lemma tr_exitexpr_incr:
forall s1 s2,
state_incr s1 s2 ->
forall map a ns nexits,
tr_exitexpr s1.(
st_code)
map a ns nexits ->
tr_exitexpr s2.(
st_code)
map a ns nexits.
Proof.
Lemma tr_stmt_incr:
forall s1 s2,
state_incr s1 s2 ->
forall map s ns nd nexits ngoto nret rret,
tr_stmt s1.(
st_code)
map s ns nd nexits ngoto nret rret ->
tr_stmt s2.(
st_code)
map s ns nd nexits ngoto nret rret.
Proof.
Lemma transl_exit_charact:
forall nexits n s ne s' incr,
transl_exit nexits n s =
OK ne s' incr ->
nth_error nexits n =
Some ne /\
s' =
s.
Proof.
Lemma transl_jumptable_charact:
forall nexits tbl s nl s' incr,
transl_jumptable nexits tbl s =
OK nl s' incr ->
tr_jumptable nexits tbl nl /\
s' =
s.
Proof.
induction tbl;
intros.
monadInv H.
split.
red.
simpl.
intros.
discriminate.
auto.
monadInv H.
exploit transl_exit_charact;
eauto.
intros [
A B].
exploit IHtbl;
eauto.
intros [
C D].
split.
red.
simpl.
intros.
destruct (
zeq v 0).
inv H.
exists x;
auto.
auto.
congruence.
Qed.
Lemma transl_exitexpr_charact:
forall nexits a map s ns s' INCR
(
TR:
transl_exitexpr map a nexits s =
OK ns s' INCR)
(
WF:
map_valid map s),
tr_exitexpr s'.(
st_code)
map a ns nexits.
Proof.
Lemma convert_builtin_res_charact:
forall map oty res s res' s' INCR
(
TR:
convert_builtin_res map oty res s =
OK res' s' INCR)
(
WF:
map_valid map s),
tr_builtin_res map res res'.
Proof.
destruct res;
simpl;
intros.
-
monadInv TR.
constructor.
unfold find_var in EQ.
destruct (
map_vars map)!
x;
inv EQ;
auto.
-
destruct (
xtype_eq oty Xvoid);
monadInv TR.
+
constructor.
+
constructor.
eauto with rtlg.
-
monadInv TR.
Qed.
Lemma transl_stmt_charact:
forall map stmt nd nexits ngoto nret rret s ns s' INCR
(
TR:
transl_stmt map stmt nd nexits ngoto nret rret s =
OK ns s' INCR)
(
WF:
map_valid map s)
(
OK:
return_reg_ok s map rret),
tr_stmt s'.(
st_code)
map stmt ns nd nexits ngoto nret rret.
Proof.
Lemma transl_function_charact:
forall f tf,
transl_function f =
Errors.OK tf ->
tr_function f tf.
Proof.