Instruction selection for division and modulus
Require Import Coqlib.
Require Import Compopts.
Require Import AST Integers Floats.
Require Import Op CminorSel SelectOp SplitLong SelectLong.
Local Open Scope cminorsel_scope.
Definition is_intconst (
e:
expr) :
option int :=
match e with
|
Eop (
Ointconst n)
_ =>
Some n
|
_ =>
None
end.
We try to turn divisions by a constant into a multiplication by
a pseudo-inverse of the divisor. The approach is described in
-
Torbjörn Granlund, Peter L. Montgomery: "Division by Invariant
Integers using Multiplication". PLDI 1994.
-
Henry S. Warren, Jr: "Hacker's Delight". Addison-Wesley. Chapter 10.
Fixpoint find_div_mul_params (
fuel:
nat) (
nc:
Z) (
d:
Z) (
p:
Z) :
option (
Z *
Z) :=
match fuel with
|
O =>
None
|
S fuel' =>
let twp :=
two_p p in
if zlt (
nc * (
d -
twp mod d))
twp
then Some(
p, (
twp +
d -
twp mod d) /
d)
else find_div_mul_params fuel'
nc d (
p + 1)
end.
Definition divs_mul_params (
d:
Z) :
option (
Z *
Z) :=
match find_div_mul_params
Int.wordsize
(
Int.half_modulus -
Int.half_modulus mod d - 1)
d 32
with
|
None =>
None
|
Some(
p,
m) =>
let p :=
p - 32
in
if zlt 0
d
&&
zlt (
two_p (32 +
p)) (
m *
d)
&&
zle (
m *
d) (
two_p (32 +
p) +
two_p (
p + 1))
&&
zle 0
m &&
zlt m Int.modulus
&&
zle 0
p &&
zlt p 32
then Some(
p,
m)
else None
end.
Definition divu_mul_params (
d:
Z) :
option (
Z *
Z) :=
match find_div_mul_params
Int.wordsize
(
Int.modulus -
Int.modulus mod d - 1)
d 32
with
|
None =>
None
|
Some(
p,
m) =>
let p :=
p - 32
in
if zlt 0
d
&&
zle (
two_p (32 +
p)) (
m *
d)
&&
zle (
m *
d) (
two_p (32 +
p) +
two_p p)
&&
zle 0
m &&
zlt m Int.modulus
&&
zle 0
p &&
zlt p 32
then Some(
p,
m)
else None
end.
Definition divls_mul_params (
d:
Z) :
option (
Z *
Z) :=
match find_div_mul_params
Int64.wordsize
(
Int64.half_modulus -
Int64.half_modulus mod d - 1)
d 64
with
|
None =>
None
|
Some(
p,
m) =>
let p :=
p - 64
in
if zlt 0
d
&&
zlt (
two_p (64 +
p)) (
m *
d)
&&
zle (
m *
d) (
two_p (64 +
p) +
two_p (
p + 1))
&&
zle 0
m &&
zlt m Int64.modulus
&&
zle 0
p &&
zlt p 64
then Some(
p,
m)
else None
end.
Definition divlu_mul_params (
d:
Z) :
option (
Z *
Z) :=
match find_div_mul_params
Int64.wordsize
(
Int64.modulus -
Int64.modulus mod d - 1)
d 64
with
|
None =>
None
|
Some(
p,
m) =>
let p :=
p - 64
in
if zlt 0
d
&&
zle (
two_p (64 +
p)) (
m *
d)
&&
zle (
m *
d) (
two_p (64 +
p) +
two_p p)
&&
zle 0
m &&
zlt m Int64.modulus
&&
zle 0
p &&
zlt p 64
then Some(
p,
m)
else None
end.
Definition divu_mul (
p:
Z) (
m:
Z) :=
shruimm (
mulhu (
Eletvar O) (
Eop (
Ointconst (
Int.repr m))
Enil))
(
Int.repr p).
Definition divuimm (
e1:
expr) (
n2:
int) :=
match Int.is_power2 n2 with
|
Some l =>
shruimm e1 l
|
None =>
if optim_for_size tt then
divu_base e1 (
Eop (
Ointconst n2)
Enil)
else
match divu_mul_params (
Int.unsigned n2)
with
|
None =>
divu_base e1 (
Eop (
Ointconst n2)
Enil)
|
Some(
p,
m) =>
Elet e1 (
divu_mul p m)
end
end.
Definition divu (
e1:
expr) (
e2:
expr) :=
match is_intconst e2,
is_intconst e1 with
|
Some n2,
Some n1 =>
if Int.eq n2 Int.zero
then divu_base e1 e2
else Eop (
Ointconst (
Int.divu n1 n2))
Enil
|
Some n2,
_ =>
divuimm e1 n2
|
_,
_ =>
divu_base e1 e2
end.
Definition mod_from_div (
equo:
expr) (
n:
int) :=
Eop Osub (
Eletvar O :::
mulimm n equo :::
Enil).
Definition moduimm (
e1:
expr) (
n2:
int) :=
match Int.is_power2 n2 with
|
Some l =>
andimm (
Int.sub n2 Int.one)
e1
|
None =>
if optim_for_size tt then
modu_base e1 (
Eop (
Ointconst n2)
Enil)
else
match divu_mul_params (
Int.unsigned n2)
with
|
None =>
modu_base e1 (
Eop (
Ointconst n2)
Enil)
|
Some(
p,
m) =>
Elet e1 (
mod_from_div (
divu_mul p m)
n2)
end
end.
Definition modu (
e1:
expr) (
e2:
expr) :=
match is_intconst e2,
is_intconst e1 with
|
Some n2,
Some n1 =>
if Int.eq n2 Int.zero
then modu_base e1 e2
else Eop (
Ointconst (
Int.modu n1 n2))
Enil
|
Some n2,
_ =>
moduimm e1 n2
|
_,
_ =>
modu_base e1 e2
end.
Definition divs_mul (
p:
Z) (
m:
Z) :=
let e2 :=
mulhs (
Eletvar O) (
Eop (
Ointconst (
Int.repr m))
Enil)
in
let e3 :=
if zlt m Int.half_modulus then e2 else add e2 (
Eletvar O)
in
add (
shrimm e3 (
Int.repr p))
(
shruimm (
Eletvar O) (
Int.repr (
Int.zwordsize - 1))).
Definition divsimm (
e1:
expr) (
n2:
int) :=
match Int.is_power2 n2 with
|
Some l =>
if Int.ltu l (
Int.repr 31)
then shrximm e1 l
else divs_base e1 (
Eop (
Ointconst n2)
Enil)
|
None =>
if optim_for_size tt then
divs_base e1 (
Eop (
Ointconst n2)
Enil)
else
match divs_mul_params (
Int.signed n2)
with
|
None =>
divs_base e1 (
Eop (
Ointconst n2)
Enil)
|
Some(
p,
m) =>
Elet e1 (
divs_mul p m)
end
end.
Definition divs (
e1:
expr) (
e2:
expr) :=
match is_intconst e2,
is_intconst e1 with
|
Some n2,
Some n1 =>
if Int.eq n2 Int.zero
then divs_base e1 e2
else Eop (
Ointconst (
Int.divs n1 n2))
Enil
|
Some n2,
_ =>
divsimm e1 n2
|
_,
_ =>
divs_base e1 e2
end.
Definition modsimm (
e1:
expr) (
n2:
int) :=
match Int.is_power2 n2 with
|
Some l =>
if Int.ltu l (
Int.repr 31)
then Elet e1 (
mod_from_div (
shrximm (
Eletvar O)
l)
n2)
else mods_base e1 (
Eop (
Ointconst n2)
Enil)
|
None =>
if optim_for_size tt then
mods_base e1 (
Eop (
Ointconst n2)
Enil)
else
match divs_mul_params (
Int.signed n2)
with
|
None =>
mods_base e1 (
Eop (
Ointconst n2)
Enil)
|
Some(
p,
m) =>
Elet e1 (
mod_from_div (
divs_mul p m)
n2)
end
end.
Definition mods (
e1:
expr) (
e2:
expr) :=
match is_intconst e2,
is_intconst e1 with
|
Some n2,
Some n1 =>
if Int.eq n2 Int.zero
then mods_base e1 e2
else Eop (
Ointconst (
Int.mods n1 n2))
Enil
|
Some n2,
_ =>
modsimm e1 n2
|
_,
_ =>
mods_base e1 e2
end.
64-bit integer divisions
Section SELECT.
Context {
hf:
helper_functions}.
Definition modl_from_divl (
equo:
expr) (
n:
int64) :=
subl (
Eletvar O) (
mullimm n equo).
Definition divlu_mull (
p:
Z) (
m:
Z) :=
shrluimm (
mullhu (
Eletvar O) (
Int64.repr m)) (
Int.repr p).
Definition divlu (
e1 e2:
expr) :=
match is_longconst e2,
is_longconst e1 with
|
Some n2,
Some n1 =>
longconst (
Int64.divu n1 n2)
|
Some n2,
_ =>
match Int64.is_power2'
n2 with
|
Some l =>
shrluimm e1 l
|
None =>
if optim_for_size tt then
divlu_base e1 e2
else
match divlu_mul_params (
Int64.unsigned n2)
with
|
None =>
divlu_base e1 e2
|
Some(
p,
m) =>
Elet e1 (
divlu_mull p m)
end
end
|
_,
_ =>
divlu_base e1 e2
end.
Definition modlu (
e1 e2:
expr) :=
match is_longconst e2,
is_longconst e1 with
|
Some n2,
Some n1 =>
longconst (
Int64.modu n1 n2)
|
Some n2,
_ =>
match Int64.is_power2 n2 with
|
Some l =>
andl e1 (
longconst (
Int64.sub n2 Int64.one))
|
None =>
if optim_for_size tt then
modlu_base e1 e2
else
match divlu_mul_params (
Int64.unsigned n2)
with
|
None =>
modlu_base e1 e2
|
Some(
p,
m) =>
Elet e1 (
modl_from_divl (
divlu_mull p m)
n2)
end
end
|
_,
_ =>
modlu_base e1 e2
end.
Definition divls_mull (
p:
Z) (
m:
Z) :=
let e2 :=
mullhs (
Eletvar O) (
Int64.repr m)
in
let e3 :=
if zlt m Int64.half_modulus then e2 else addl e2 (
Eletvar O)
in
addl (
shrlimm e3 (
Int.repr p))
(
shrluimm (
Eletvar O) (
Int.repr (
Int64.zwordsize - 1))).
Definition divls (
e1 e2:
expr) :=
match is_longconst e2,
is_longconst e1 with
|
Some n2,
Some n1 =>
longconst (
Int64.divs n1 n2)
|
Some n2,
_ =>
match Int64.is_power2'
n2 with
|
Some l =>
if Int.ltu l (
Int.repr 63)
then shrxlimm e1 l
else divls_base e1 e2
|
None =>
if optim_for_size tt then
divls_base e1 e2
else
match divls_mul_params (
Int64.signed n2)
with
|
None =>
divls_base e1 e2
|
Some(
p,
m) =>
Elet e1 (
divls_mull p m)
end
end
|
_,
_ =>
divls_base e1 e2
end.
Definition modls (
e1 e2:
expr) :=
match is_longconst e2,
is_longconst e1 with
|
Some n2,
Some n1 =>
longconst (
Int64.mods n1 n2)
|
Some n2,
_ =>
match Int64.is_power2'
n2 with
|
Some l =>
if Int.ltu l (
Int.repr 63)
then Elet e1 (
modl_from_divl (
shrxlimm (
Eletvar O)
l)
n2)
else modls_base e1 e2
|
None =>
if optim_for_size tt then
modls_base e1 e2
else
match divls_mul_params (
Int64.signed n2)
with
|
None =>
modls_base e1 e2
|
Some(
p,
m) =>
Elet e1 (
modl_from_divl (
divls_mull p m)
n2)
end
end
|
_,
_ =>
modls_base e1 e2
end.
End SELECT.
Floating-point division by a constant can also be turned into a FP
multiplication by the inverse constant, but only for powers of 2.
Definition divfimm (
e:
expr) (
n:
float) :=
match Float.exact_inverse n with
|
Some n' =>
Eop Omulf (
e :::
Eop (
Ofloatconst n')
Enil :::
Enil)
|
None =>
Eop Odivf (
e :::
Eop (
Ofloatconst n)
Enil :::
Enil)
end.
Original definition:
Nondetfunction divf (e1: expr) (e2: expr) :=
match e2 with
| Eop (Ofloatconst n2) Enil => divfimm e1 n2
| _ => Eop Odivf (e1 ::: e2 ::: Enil)
end.
Inductive divf_cases:
forall (
e2:
expr),
Type :=
|
divf_case1:
forall n2,
divf_cases (
Eop (
Ofloatconst n2)
Enil)
|
divf_default:
forall (
e2:
expr),
divf_cases e2.
Definition divf_match (
e2:
expr) :=
match e2 as zz1 return divf_cases zz1 with
|
Eop (
Ofloatconst n2)
Enil =>
divf_case1 n2
|
e2 =>
divf_default e2
end.
Definition divf (
e1:
expr) (
e2:
expr) :=
match divf_match e2 with
|
divf_case1 n2 =>
divfimm e1 n2
|
divf_default e2 =>
Eop Odivf (
e1 :::
e2 :::
Enil)
end.
Definition divfsimm (
e:
expr) (
n:
float32) :=
match Float32.exact_inverse n with
|
Some n' =>
Eop Omulfs (
e :::
Eop (
Osingleconst n')
Enil :::
Enil)
|
None =>
Eop Odivfs (
e :::
Eop (
Osingleconst n)
Enil :::
Enil)
end.
Original definition:
Nondetfunction divfs (e1: expr) (e2: expr) :=
match e2 with
| Eop (Osingleconst n2) Enil => divfsimm e1 n2
| _ => Eop Odivfs (e1 ::: e2 ::: Enil)
end.
Inductive divfs_cases:
forall (
e2:
expr),
Type :=
|
divfs_case1:
forall n2,
divfs_cases (
Eop (
Osingleconst n2)
Enil)
|
divfs_default:
forall (
e2:
expr),
divfs_cases e2.
Definition divfs_match (
e2:
expr) :=
match e2 as zz1 return divfs_cases zz1 with
|
Eop (
Osingleconst n2)
Enil =>
divfs_case1 n2
|
e2 =>
divfs_default e2
end.
Definition divfs (
e1:
expr) (
e2:
expr) :=
match divfs_match e2 with
|
divfs_case1 n2 =>
divfsimm e1 n2
|
divfs_default e2 =>
Eop Odivfs (
e1 :::
e2 :::
Enil)
end.