Module Tunnelingproof


Correctness proof for the branch tunneling optimization.

Require Import FunInd.
Require Import Coqlib Maps UnionFind.
Require Import AST Linking.
Require Import Values Memory Events Globalenvs Smallstep.
Require Import Op Locations LTL.
Require Import Tunneling.

Definition match_prog (p tp: program) :=
  match_program (fun ctx f tf => tf = tunnel_fundef f) eq p tp.

Lemma transf_program_match:
  forall p, match_prog p (tunnel_program p).
Proof.
  intros. eapply match_transform_program; eauto.
Qed.

Properties of the branch map computed using union-find.


Section BRANCH_MAP_CORRECT.

Variable fn: LTL.function.

Definition measure_branch (u: U.t) (pc s: node) (f: node -> nat) : node -> nat :=
  fun x => if peq (U.repr u s) pc then f x
           else if peq (U.repr u x) pc then (f x + f s + 1)%nat
           else f x.

Definition measure_cond (u: U.t) (pc s1 s2: node) (f: node -> nat) : node -> nat :=
  fun x => if peq (U.repr u s1) pc then f x
           else if peq (U.repr u x) pc then (f x + Nat.max (f s1) (f s2) + 1)%nat
           else f x.

Definition branch_map_correct_1 (c: code) (u: U.t) (f: node -> nat): Prop :=
  forall pc,
  match c!pc with
  | Some(Lbranch s :: b) =>
      U.repr u pc = pc \/ (U.repr u pc = U.repr u s /\ f s < f pc)%nat
  | _ =>
      U.repr u pc = pc
  end.

Lemma record_branch_correct:
  forall c u f pc b,
  branch_map_correct_1 (PTree.remove pc c) u f ->
  c!pc = Some b ->
  { f' | branch_map_correct_1 c (record_branch u pc b) f' }.
Proof.
  intros c u f pc b BMC GET1.
  assert (PC: U.repr u pc = pc).
  { specialize (BMC pc). rewrite PTree.grs in BMC. auto. }
  assert (DFL: { f | branch_map_correct_1 c u f }).
  { exists f. intros p. destruct (peq p pc).
  - subst p. rewrite GET1. destruct b as [ | [] b ]; auto.
  - specialize (BMC p). rewrite PTree.gro in BMC by auto. exact BMC.
  }
  unfold record_branch. destruct b as [ | [] b ]; auto.
  exists (measure_branch u pc s f). intros p. destruct (peq p pc).
+ subst p. rewrite GET1. unfold measure_branch.
  rewrite (U.repr_union_2 u pc s); auto. rewrite U.repr_union_3.
  destruct (peq (U.repr u s) pc); auto. rewrite PC, peq_true. right; split; auto. lia.
+ specialize (BMC p). rewrite PTree.gro in BMC by auto.
  assert (U.repr u p = p -> U.repr (U.union u pc s) p = p).
  { intro. rewrite <- H at 2. apply U.repr_union_1. congruence. }
  destruct (c!p) as [ [ | [] _ ] | ]; auto.
  destruct BMC as [A | [A B]]. auto.
  right; split. apply U.sameclass_union_2; auto.
  unfold measure_branch. destruct (peq (U.repr u s) pc). auto.
  rewrite A. destruct (peq (U.repr u s0) pc); lia.
Qed.

Lemma record_branches_correct:
  { f | branch_map_correct_1 fn.(fn_code) (record_branches fn) f }.
Proof.
  unfold record_branches. apply PTree_Properties.fold_ind.
- (* base case *)
  intros m EMPTY. exists (fun _ => O).
  red; intros. rewrite EMPTY. apply U.repr_empty.
- (* inductive case *)
  intros m u pc bb GET1 GET2 [f BMC]. eapply record_branch_correct; eauto.
Qed.

Definition branch_map_correct_2 (c: code) (u: U.t) (f: node -> nat): Prop :=
  forall pc,
  match fn.(fn_code)!pc with
  | Some(Lbranch s :: b) =>
      U.repr u pc = pc \/ (U.repr u pc = U.repr u s /\ f s < f pc)%nat
  | Some(Lcond cond args s1 s2 :: b) =>
      U.repr u pc = pc \/ (c!pc = None /\ U.repr u pc = U.repr u s1 /\ U.repr u pc = U.repr u s2 /\ f s1 < f pc /\ f s2 < f pc)%nat
  | _ =>
      U.repr u pc = pc
  end.

Lemma record_cond_correct:
  forall c u changed f pc b,
  branch_map_correct_2 c u f ->
  fn.(fn_code)!pc = Some b ->
  c!pc <> None ->
  let '(c1, u1, _) := record_cond (c, u, changed) pc b in
  { f' | branch_map_correct_2 c1 u1 f' }.
Proof.
  intros c u changed f pc b BMC GET1 GET2.
  assert (DFL: { f' | branch_map_correct_2 c u f' }).
  { exists f; auto. }
  unfold record_cond. destruct b as [ | [] b ]; auto.
  destruct (peq (U.repr u s1) (U.repr u s2)); auto.
  exists (measure_cond u pc s1 s2 f).
  assert (PC: U.repr u pc = pc).
  { specialize (BMC pc). rewrite GET1 in BMC. intuition congruence. }
  intro p. destruct (peq p pc).
- subst p. rewrite GET1. unfold measure_cond.
  rewrite U.repr_union_2 by auto. rewrite <- e, PC, peq_true.
  destruct (peq (U.repr u s1) pc); auto.
  right; repeat split.
  + apply PTree.grs.
  + rewrite U.repr_union_3. auto.
  + rewrite U.repr_union_1 by congruence. auto.
  + lia.
  + lia.
- assert (P: U.repr u p = p -> U.repr (U.union u pc s1) p = p).
  { intros. rewrite U.repr_union_1 by congruence. auto. }
  specialize (BMC p). destruct (fn_code fn)!p as [ [ | [] bb ] | ]; auto.
  + destruct BMC as [A | (A & B)]; auto. right; split.
    * apply U.sameclass_union_2; auto.
    * unfold measure_cond. rewrite <- A.
      destruct (peq (U.repr u s1) pc). auto.
      destruct (peq (U.repr u p) pc); lia.
  + destruct BMC as [A | (A & B & C & D & E)]; auto. right; split; [ | split; [ | split]].
    * rewrite PTree.gro by auto. auto.
    * apply U.sameclass_union_2; auto.
    * apply U.sameclass_union_2; auto.
    * unfold measure_cond. rewrite <- B, <- C.
      destruct (peq (U.repr u s1) pc). auto.
      destruct (peq (U.repr u p) pc); lia.
Qed.

Definition code_compat (c: code) : Prop :=
  forall pc b, c!pc = Some b -> fn.(fn_code)!pc = Some b.

Definition code_invariant (c0 c1 c2: code) : Prop :=
  forall pc, c0!pc = None -> c1!pc = c2!pc.

Lemma record_conds_1_correct:
  forall c u f,
  branch_map_correct_2 c u f ->
  code_compat c ->
  let '(c', u', _) := record_conds_1 (c, u) in
  (code_compat c' * { f' | branch_map_correct_2 c' u' f' })%type.
Proof.
  intros c0 u0 f0 BMC0 COMPAT0.
  unfold record_conds_1.
  set (x := PTree.fold record_cond c0 (c0, u0, false)).
  set (P := fun (cd: code) (cuc: code * U.t * bool) =>
            (code_compat (fst (fst cuc)) *
             code_invariant cd (fst (fst cuc)) c0 *
             { f | branch_map_correct_2 (fst (fst cuc)) (snd (fst cuc)) f })%type).
  assert (REC: P c0 x).
  { unfold x; apply PTree_Properties.fold_ind.
  - intros cd EMPTY. split; [split|]; simpl.
    + auto.
    + red; auto.
    + exists f0; auto.
  - intros cd [[c u] changed] pc b GET1 GET2 [[COMPAT INV] [f BMC]]. simpl in *.
    split; [split|].
    + unfold record_cond; destruct b as [ | [] b]; simpl; auto.
      destruct (peq (U.repr u s1) (U.repr u s2)); simpl; auto.
      red; intros. rewrite PTree.grspec in H. destruct (PTree.elt_eq pc0 pc). discriminate. auto.
    + assert (DFL: code_invariant cd c c0).
      { intros p GET. apply INV. rewrite PTree.gro by congruence. auto. }
      unfold record_cond; destruct b as [ | [] b]; simpl; auto.
      destruct (peq (U.repr u s1) (U.repr u s2)); simpl; auto.
      intros p GET. rewrite PTree.gro by congruence. apply INV. rewrite PTree.gro by congruence. auto.
    + assert (GET3: c!pc = Some b).
      { rewrite <- GET2. apply INV. apply PTree.grs. }
      assert (X: fn.(fn_code)!pc = Some b) by auto.
      assert (Y: c!pc <> None) by congruence.
      generalize (record_cond_correct c u changed f pc b BMC X Y).
      destruct (record_cond (c, u, changed) pc b) as [[c1 u1] changed1]; simpl.
      auto.
  }
  destruct x as [[c1 u1] changed1]; destruct REC as [[COMPAT1 INV1] BMC1]; auto.
Qed.

Definition branch_map_correct (u: U.t) (f: node -> nat): Prop :=
  forall pc,
  match fn.(fn_code)!pc with
  | Some(Lbranch s :: b) =>
      U.repr u pc = pc \/ (U.repr u pc = U.repr u s /\ f s < f pc)%nat
  | Some(Lcond cond args s1 s2 :: b) =>
      U.repr u pc = pc \/ (U.repr u pc = U.repr u s1 /\ U.repr u pc = U.repr u s2 /\ f s1 < f pc /\ f s2 < f pc)%nat
  | _ =>
      U.repr u pc = pc
  end.

Lemma record_conds_correct:
  forall cu,
  { f | branch_map_correct_2 (fst cu) (snd cu) f } ->
  code_compat (fst cu) ->
  { f | branch_map_correct (record_conds cu) f }.
Proof.
  intros cu0. functional induction (record_conds cu0); intros.
- destruct cu as [c u], cu' as [c' u'], H as [f BMC].
  generalize (record_conds_1_correct c u f BMC H0).
  rewrite e. intros [U V]. apply IHt; auto.
- destruct cu as [c u], H as [f BMC].
  exists f. intros pc. specialize (BMC pc); simpl in *.
  destruct (fn_code fn)!pc as [ [ | [] b ] | ]; tauto.
Qed.

Lemma record_gotos_correct_1:
  { f | branch_map_correct (record_gotos fn) f }.
Proof.
  apply record_conds_correct; simpl.
- destruct record_branches_correct as [f BMC].
  exists f. intros pc. specialize (BMC pc); simpl in *.
  destruct (fn_code fn)!pc as [ [ | [] b ] | ]; auto.
- red; auto.
Qed.

Definition branch_target (pc: node) : node :=
  U.repr (record_gotos fn) pc.

Definition count_gotos (pc: node) : nat :=
  proj1_sig record_gotos_correct_1 pc.

Theorem record_gotos_correct:
  forall pc,
  match fn.(fn_code)!pc with
  | Some(Lbranch s :: b) =>
      branch_target pc = pc \/
      (branch_target pc = branch_target s /\ count_gotos s < count_gotos pc)%nat
  | Some(Lcond cond args s1 s2 :: b) =>
      branch_target pc = pc \/
      (branch_target pc = branch_target s1 /\ branch_target pc = branch_target s2
       /\ count_gotos s1 < count_gotos pc /\ count_gotos s2 < count_gotos pc)%nat
  | _ =>
      branch_target pc = pc
  end.
Proof.
  intros. unfold count_gotos. destruct record_gotos_correct_1 as [f P]; simpl.
  apply P.
Qed.

End BRANCH_MAP_CORRECT.

Preservation of semantics


Section PRESERVATION.

Variables prog tprog: program.
Hypothesis TRANSL: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma functions_translated:
  forall v f,
  Genv.find_funct ge v = Some f ->
  Genv.find_funct tge v = Some (tunnel_fundef f).
Proof (Genv.find_funct_transf TRANSL).

Lemma function_ptr_translated:
  forall v f,
  Genv.find_funct_ptr ge v = Some f ->
  Genv.find_funct_ptr tge v = Some (tunnel_fundef f).
Proof (Genv.find_funct_ptr_transf TRANSL).

Lemma symbols_preserved:
  forall id,
  Genv.find_symbol tge id = Genv.find_symbol ge id.
Proof (Genv.find_symbol_transf TRANSL).

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof (Genv.senv_transf TRANSL).

Lemma sig_preserved:
  forall f, funsig (tunnel_fundef f) = funsig f.
Proof.
  destruct f; reflexivity.
Qed.

The proof of semantic preservation is a simulation argument based on diagrams of the following form:
           st1 --------------- st2
            |                   |
           t|                  ?|t
            |                   |
            v                   v
           st1'--------------- st2'
The match_states predicate, defined below, captures the precondition between states st1 and st2, as well as the postcondition between st1' and st2'. One transition in the source code (left) can correspond to zero or one transition in the transformed code (right). The "zero transition" case occurs when executing a Lgoto instruction in the source code that has been removed by tunneling. In the definition of match_states, what changes between the original and transformed codes is mainly the control-flow (in particular, the current program point pc), but also some values and memory states, since some Vundef values can become more defined as a consequence of eliminating useless Lcond instructions.

Definition tunneled_block (f: function) (b: bblock) :=
  tunnel_block (record_gotos f) b.

Definition tunneled_code (f: function) :=
  PTree.map1 (tunneled_block f) (fn_code f).

Definition locmap_lessdef (ls1 ls2: locset) : Prop :=
  forall l, Val.lessdef (ls1 l) (ls2 l).

Inductive match_stackframes: stackframe -> stackframe -> Prop :=
  | match_stackframes_intro:
      forall f sp ls0 bb tls0,
      locmap_lessdef ls0 tls0 ->
      match_stackframes
         (Stackframe f sp ls0 bb)
         (Stackframe (tunnel_function f) sp tls0 (tunneled_block f bb)).

Inductive match_states: state -> state -> Prop :=
  | match_states_intro:
      forall s f sp pc ls m ts tls tm
        (STK: list_forall2 match_stackframes s ts)
        (LS: locmap_lessdef ls tls)
        (MEM: Mem.extends m tm),
      match_states (State s f sp pc ls m)
                   (State ts (tunnel_function f) sp (branch_target f pc) tls tm)
  | match_states_block:
      forall s f sp bb ls m ts tls tm
        (STK: list_forall2 match_stackframes s ts)
        (LS: locmap_lessdef ls tls)
        (MEM: Mem.extends m tm),
      match_states (Block s f sp bb ls m)
                   (Block ts (tunnel_function f) sp (tunneled_block f bb) tls tm)
  | match_states_interm_branch:
      forall s f sp pc bb ls m ts tls tm
        (STK: list_forall2 match_stackframes s ts)
        (LS: locmap_lessdef ls tls)
        (MEM: Mem.extends m tm),
      match_states (Block s f sp (Lbranch pc :: bb) ls m)
                   (State ts (tunnel_function f) sp (branch_target f pc) tls tm)
  | match_states_interm_cond:
      forall s f sp cond args pc1 pc2 bb ls m ts tls tm
        (STK: list_forall2 match_stackframes s ts)
        (LS: locmap_lessdef ls tls)
        (MEM: Mem.extends m tm)
        (SAME: branch_target f pc1 = branch_target f pc2),
      match_states (Block s f sp (Lcond cond args pc1 pc2 :: bb) ls m)
                   (State ts (tunnel_function f) sp (branch_target f pc1) tls tm)
  | match_states_call:
      forall s f ls m ts tls tm
        (STK: list_forall2 match_stackframes s ts)
        (LS: locmap_lessdef ls tls)
        (MEM: Mem.extends m tm),
      match_states (Callstate s f ls m)
                   (Callstate ts (tunnel_fundef f) tls tm)
  | match_states_return:
      forall s ls m ts tls tm
        (STK: list_forall2 match_stackframes s ts)
        (LS: locmap_lessdef ls tls)
        (MEM: Mem.extends m tm),
      match_states (Returnstate s ls m)
                   (Returnstate ts tls tm).

Properties of locmap_lessdef

Lemma reglist_lessdef:
  forall rl ls1 ls2,
  locmap_lessdef ls1 ls2 -> Val.lessdef_list (reglist ls1 rl) (reglist ls2 rl).
Proof.
  induction rl; simpl; intros; auto.
Qed.

Lemma locmap_set_lessdef:
  forall ls1 ls2 v1 v2 l,
  locmap_lessdef ls1 ls2 -> Val.lessdef v1 v2 -> locmap_lessdef (Locmap.set l v1 ls1) (Locmap.set l v2 ls2).
Proof.
  intros; red; intros l'. unfold Locmap.set. destruct (Loc.eq l l').
- destruct l; auto using Val.load_result_lessdef.
- destruct (Loc.diff_dec l l'); auto.
Qed.

Lemma locmap_set_undef_lessdef:
  forall ls1 ls2 l,
  locmap_lessdef ls1 ls2 -> locmap_lessdef (Locmap.set l Vundef ls1) ls2.
Proof.
  intros; red; intros l'. unfold Locmap.set. destruct (Loc.eq l l').
- destruct l; auto. destruct ty; auto.
- destruct (Loc.diff_dec l l'); auto.
Qed.

Lemma locmap_undef_regs_lessdef:
  forall rl ls1 ls2,
  locmap_lessdef ls1 ls2 -> locmap_lessdef (undef_regs rl ls1) (undef_regs rl ls2).
Proof.
  induction rl as [ | r rl]; intros; simpl. auto. apply locmap_set_lessdef; auto.
Qed.

Lemma locmap_undef_regs_lessdef_1:
  forall rl ls1 ls2,
  locmap_lessdef ls1 ls2 -> locmap_lessdef (undef_regs rl ls1) ls2.
Proof.
  induction rl as [ | r rl]; intros; simpl. auto. apply locmap_set_undef_lessdef; auto.
Qed.


Lemma locmap_getpair_lessdef:
  forall p ls1 ls2,
  locmap_lessdef ls1 ls2 -> Val.lessdef (Locmap.getpair p ls1) (Locmap.getpair p ls2).
Proof.
  intros; destruct p; simpl; auto using Val.longofwords_lessdef.
Qed.

Lemma locmap_getpairs_lessdef:
  forall pl ls1 ls2,
  locmap_lessdef ls1 ls2 ->
  Val.lessdef_list (map (fun p => Locmap.getpair p ls1) pl) (map (fun p => Locmap.getpair p ls2) pl).
Proof.
  intros. induction pl; simpl; auto using locmap_getpair_lessdef.
Qed.

Lemma locmap_setpair_lessdef:
  forall p ls1 ls2 v1 v2,
  locmap_lessdef ls1 ls2 -> Val.lessdef v1 v2 -> locmap_lessdef (Locmap.setpair p v1 ls1) (Locmap.setpair p v2 ls2).
Proof.
  intros; destruct p; simpl; auto using locmap_set_lessdef, Val.loword_lessdef, Val.hiword_lessdef.
Qed.

Lemma locmap_setres_lessdef:
  forall res ls1 ls2 v1 v2,
  locmap_lessdef ls1 ls2 -> Val.lessdef v1 v2 -> locmap_lessdef (Locmap.setres res v1 ls1) (Locmap.setres res v2 ls2).
Proof.
  induction res; intros; simpl; auto using locmap_set_lessdef, Val.loword_lessdef, Val.hiword_lessdef.
Qed.

Lemma locmap_undef_caller_save_regs_lessdef:
  forall ls1 ls2,
  locmap_lessdef ls1 ls2 -> locmap_lessdef (undef_caller_save_regs ls1) (undef_caller_save_regs ls2).
Proof.
  intros; red; intros. unfold undef_caller_save_regs.
  destruct l.
- destruct (Conventions1.is_callee_save r); auto.
- destruct sl; auto.
Qed.

Lemma find_function_translated:
  forall ros ls tls fd,
  locmap_lessdef ls tls ->
  find_function ge ros ls = Some fd ->
  find_function tge ros tls = Some (tunnel_fundef fd).
Proof.
  intros. destruct ros; simpl in *.
- assert (E: tls (R m) = ls (R m)).
  { exploit Genv.find_funct_inv; eauto. intros (b & EQ).
    generalize (H (R m)). rewrite EQ. intros LD; inv LD. auto. }
  rewrite E. apply functions_translated; auto.
- rewrite symbols_preserved. destruct (Genv.find_symbol ge i); inv H0.
  apply function_ptr_translated; auto.
Qed.

Lemma call_regs_lessdef:
  forall ls1 ls2, locmap_lessdef ls1 ls2 -> locmap_lessdef (call_regs ls1) (call_regs ls2).
Proof.
  intros; red; intros. destruct l as [r | [] ofs ty]; simpl; auto.
Qed.

Lemma return_regs_lessdef:
  forall caller1 callee1 caller2 callee2,
  locmap_lessdef caller1 caller2 ->
  locmap_lessdef callee1 callee2 ->
  locmap_lessdef (return_regs caller1 callee1) (return_regs caller2 callee2).
Proof.
  intros; red; intros. destruct l; simpl.
- destruct (Conventions1.is_callee_save r); auto.
- destruct sl; auto.
Qed.

To preserve non-terminating behaviours, we show that the transformed code cannot take an infinity of "zero transition" cases. We use the following measure function over source states, which decreases strictly in the "zero transition" case.

Definition measure (st: state) : nat :=
  match st with
  | State s f sp pc ls m => (count_gotos f pc * 2)%nat
  | Block s f sp (Lbranch pc :: _) ls m => (count_gotos f pc * 2 + 1)%nat
  | Block s f sp (Lcond _ _ pc1 pc2 :: _) ls m => (Nat.max (count_gotos f pc1) (count_gotos f pc2) * 2 + 1)%nat
  | Block s f sp bb ls m => 0%nat
  | Callstate s f ls m => 0%nat
  | Returnstate s ls m => 0%nat
  end.

Lemma match_parent_locset:
  forall s ts,
  list_forall2 match_stackframes s ts ->
  locmap_lessdef (parent_locset s) (parent_locset ts).
Proof.
  induction 1; simpl.
- red; auto.
- inv H; auto.
Qed.

Lemma tunnel_step_correct:
  forall st1 t st2, step ge st1 t st2 ->
  forall st1' (MS: match_states st1 st1'),
  (exists st2', step tge st1' t st2' /\ match_states st2 st2')
  \/ (measure st2 < measure st1 /\ t = E0 /\ match_states st2 st1')%nat.
Proof.
  induction 1; intros; try inv MS.

- (* entering a block *)
  assert (DEFAULT: branch_target f pc = pc ->
    (exists st2' : state,
     step tge (State ts (tunnel_function f) sp (branch_target f pc) tls tm) E0 st2'
     /\ match_states (Block s f sp bb rs m) st2')).
  { intros. rewrite H0. econstructor; split.
    econstructor. simpl. rewrite PTree.gmap1. rewrite H. simpl. eauto.
    econstructor; eauto. }

  generalize (record_gotos_correct f pc). rewrite H.
  destruct bb; auto. destruct i; auto.
+ (* Lbranch *)
  intros [A | [B C]]. auto.
  right. split. simpl. lia.
  split. auto.
  rewrite B. econstructor; eauto.
+ (* Lcond *)
  intros [A | (B & C & D & E)]. auto.
  right. split. simpl. lia.
  split. auto.
  rewrite B. econstructor; eauto. congruence.

- (* Lop *)
  exploit eval_operation_lessdef. apply reglist_lessdef; eauto. eauto. eauto.
  intros (tv & EV & LD).
  left; simpl; econstructor; split.
  eapply exec_Lop with (v := tv); eauto.
  rewrite <- EV. apply eval_operation_preserved. exact symbols_preserved.
  econstructor; eauto using locmap_set_lessdef, locmap_undef_regs_lessdef.
- (* Lload *)
  exploit eval_addressing_lessdef. apply reglist_lessdef; eauto. eauto.
  intros (ta & EV & LD).
  exploit Mem.loadv_extends. eauto. eauto. eexact LD.
  intros (tv & LOAD & LD').
  left; simpl; econstructor; split.
  eapply exec_Lload with (a := ta).
  rewrite <- EV. apply eval_addressing_preserved. exact symbols_preserved.
  eauto. eauto.
  econstructor; eauto using locmap_set_lessdef, locmap_undef_regs_lessdef.
- (* Lgetstack *)
  left; simpl; econstructor; split.
  econstructor; eauto.
  econstructor; eauto using locmap_set_lessdef, locmap_undef_regs_lessdef.
- (* Lsetstack *)
  left; simpl; econstructor; split.
  econstructor; eauto.
  econstructor; eauto using locmap_set_lessdef, locmap_undef_regs_lessdef.
- (* Lstore *)
  exploit eval_addressing_lessdef. apply reglist_lessdef; eauto. eauto.
  intros (ta & EV & LD).
  exploit Mem.storev_extends. eauto. eauto. eexact LD. apply LS.
  intros (tm' & STORE & MEM').
  left; simpl; econstructor; split.
  eapply exec_Lstore with (a := ta).
  rewrite <- EV. apply eval_addressing_preserved. exact symbols_preserved.
  eauto. eauto.
  econstructor; eauto using locmap_undef_regs_lessdef.
- (* Lcall *)
  left; simpl; econstructor; split.
  eapply exec_Lcall with (fd := tunnel_fundef fd); eauto.
  eapply find_function_translated; eauto.
  rewrite sig_preserved. auto.
  econstructor; eauto.
  constructor; auto.
  constructor; auto.
- (* Ltailcall *)
  exploit Mem.free_parallel_extends. eauto. eauto. intros (tm' & FREE & MEM').
  left; simpl; econstructor; split.
  eapply exec_Ltailcall with (fd := tunnel_fundef fd); eauto.
  eapply find_function_translated; eauto using return_regs_lessdef, match_parent_locset.
  apply sig_preserved.
  econstructor; eauto using return_regs_lessdef, match_parent_locset.
- (* Lbuiltin *)
  exploit eval_builtin_args_lessdef. eexact LS. eauto. eauto. intros (tvargs & EVA & LDA).
  exploit external_call_mem_extends; eauto. intros (tvres & tm' & A & B & C & D).
  left; simpl; econstructor; split.
  eapply exec_Lbuiltin; eauto.
  eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
  eapply external_call_symbols_preserved. apply senv_preserved. eauto.
  econstructor; eauto using locmap_setres_lessdef, locmap_undef_regs_lessdef.
- (* Lbranch (preserved) *)
  left; simpl; econstructor; split.
  eapply exec_Lbranch; eauto.
  fold (branch_target f pc). econstructor; eauto.
- (* Lbranch (eliminated) *)
  right; split. simpl. lia. split. auto. constructor; auto.

- (* Lcond (preserved) *)
  simpl tunneled_block.
  set (s1 := U.repr (record_gotos f) pc1). set (s2 := U.repr (record_gotos f) pc2).
  destruct (peq s1 s2).
+ left; econstructor; split.
  eapply exec_Lbranch.
  set (pc := if b then pc1 else pc2).
  replace s1 with (branch_target f pc) by (unfold pc; destruct b; auto).
  constructor; eauto using locmap_undef_regs_lessdef_1.
+ left; econstructor; split.
  eapply exec_Lcond; eauto. eapply eval_condition_lessdef; eauto using reglist_lessdef.
  destruct b; econstructor; eauto using locmap_undef_regs_lessdef.
- (* Lcond (eliminated) *)
  right; split. simpl. destruct b; lia.
  split. auto.
  set (pc := if b then pc1 else pc2).
  replace (branch_target f pc1) with (branch_target f pc) by (unfold pc; destruct b; auto).
  econstructor; eauto.

- (* Ljumptable *)
  assert (tls (R arg) = Vint n).
  { generalize (LS (R arg)); rewrite H; intros LD; inv LD; auto. }
  left; simpl; econstructor; split.
  eapply exec_Ljumptable.
  eauto. rewrite list_nth_z_map. change U.elt with node. rewrite H0. reflexivity. eauto.
  econstructor; eauto using locmap_undef_regs_lessdef.
- (* Lreturn *)
  exploit Mem.free_parallel_extends. eauto. eauto. intros (tm' & FREE & MEM').
  left; simpl; econstructor; split.
  eapply exec_Lreturn; eauto.
  constructor; eauto using return_regs_lessdef, match_parent_locset.
- (* internal function *)
  exploit Mem.alloc_extends. eauto. eauto. apply Z.le_refl. apply Z.le_refl.
  intros (tm' & ALLOC & MEM').
  left; simpl; econstructor; split.
  eapply exec_function_internal; eauto.
  simpl. econstructor; eauto using locmap_undef_regs_lessdef, call_regs_lessdef.
- (* external function *)
  exploit external_call_mem_extends; eauto using locmap_getpairs_lessdef.
  intros (tvres & tm' & A & B & C & D).
  left; simpl; econstructor; split.
  eapply exec_function_external; eauto.
  eapply external_call_symbols_preserved; eauto. apply senv_preserved.
  simpl. econstructor; eauto using locmap_setpair_lessdef, locmap_undef_caller_save_regs_lessdef.
- (* return *)
  inv STK. inv H1.
  left; econstructor; split.
  eapply exec_return; eauto.
  constructor; auto.
Qed.

Lemma transf_initial_states:
  forall st1, initial_state prog st1 ->
  exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inversion H.
  exists (Callstate nil (tunnel_fundef f) (Locmap.init Vundef) m0); split.
  econstructor; eauto.
  apply (Genv.init_mem_transf TRANSL); auto.
  rewrite (match_program_main TRANSL).
  rewrite symbols_preserved. eauto.
  apply function_ptr_translated; auto.
  rewrite <- H3. apply sig_preserved.
  constructor. constructor. red; simpl; auto. apply Mem.extends_refl.
Qed.

Lemma transf_final_states:
  forall st1 st2 r,
  match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.
  intros. inv H0. inv H. inv STK.
  set (p := map_rpair R (Conventions1.loc_result signature_main)) in *.
  generalize (locmap_getpair_lessdef p _ _ LS). rewrite H1; intros LD; inv LD.
  econstructor; eauto.
Qed.

Theorem transf_program_correct:
  forward_simulation (LTL.semantics prog) (LTL.semantics tprog).
Proof.
  eapply forward_simulation_opt.
  apply senv_preserved.
  eexact transf_initial_states.
  eexact transf_final_states.
  eexact tunnel_step_correct.
Qed.

End PRESERVATION.