Module Ctypes


Type expressions for the Compcert C and Clight languages

Require Import Axioms Coqlib Maps Errors.
Require Import AST Linking.
Require Archi.

Set Asymmetric Patterns.

Local Open Scope error_monad_scope.

Syntax of types


Compcert C types are similar to those of C. They include numeric types, pointers, arrays, function types, and composite types (struct and union). Numeric types (integers and floats) fully specify the bit size of the type. An integer type is a pair of a signed/unsigned flag and a bit size: 8, 16, or 32 bits, or the special IBool size standing for the C99 _Bool type. 64-bit integers are treated separately.

Inductive signedness : Type :=
  | Signed: signedness
  | Unsigned: signedness.

Inductive intsize : Type :=
  | I8: intsize
  | I16: intsize
  | I32: intsize
  | IBool: intsize.

Float types come in two sizes: 32 bits (single precision) and 64-bit (double precision).

Inductive floatsize : Type :=
  | F32: floatsize
  | F64: floatsize.

Every type carries a set of attributes. Currently, only two attributes are modeled: volatile and _Alignas(n) (from ISO C 2011).

Record attr : Type := mk_attr {
  attr_volatile: bool;
  attr_alignas: option N (* log2 of required alignment *)
}.

Definition noattr := {| attr_volatile := false; attr_alignas := None |}.

The syntax of type expressions. Some points to note:

Inductive type : Type :=
  | Tvoid: type (* the void type *)
  | Tint: intsize -> signedness -> attr -> type (* integer types *)
  | Tlong: signedness -> attr -> type (* 64-bit integer types *)
  | Tfloat: floatsize -> attr -> type (* floating-point types *)
  | Tpointer: type -> attr -> type (* pointer types (*ty) *)
  | Tarray: type -> Z -> attr -> type (* array types (ty[len]) *)
  | Tfunction: typelist -> type -> calling_convention -> type (* function types *)
  | Tstruct: ident -> attr -> type (* struct types *)
  | Tunion: ident -> attr -> type (* union types *)
with typelist : Type :=
  | Tnil: typelist
  | Tcons: type -> typelist -> typelist.

Lemma intsize_eq: forall (s1 s2: intsize), {s1=s2} + {s1<>s2}.
Proof.
  decide equality.
Defined.

Lemma signedness_eq: forall (s1 s2: signedness), {s1=s2} + {s1<>s2}.
Proof.
  decide equality.
Defined.

Lemma attr_eq: forall (a1 a2: attr), {a1=a2} + {a1<>a2}.
Proof.
  decide equality. decide equality. apply N.eq_dec. apply bool_dec.
Defined.

Lemma type_eq: forall (ty1 ty2: type), {ty1=ty2} + {ty1<>ty2}
with typelist_eq: forall (tyl1 tyl2: typelist), {tyl1=tyl2} + {tyl1<>tyl2}.
Proof.
  assert (forall (x y: floatsize), {x=y} + {x<>y}) by decide equality.
  generalize ident_eq zeq bool_dec ident_eq intsize_eq signedness_eq attr_eq; intros.
  decide equality.
  decide equality.
  decide equality.
  decide equality.
Defined.

Global Opaque intsize_eq signedness_eq attr_eq type_eq typelist_eq.

Extract the attributes of a type.

Definition attr_of_type (ty: type) :=
  match ty with
  | Tvoid => noattr
  | Tint sz si a => a
  | Tlong si a => a
  | Tfloat sz a => a
  | Tpointer elt a => a
  | Tarray elt sz a => a
  | Tfunction args res cc => noattr
  | Tstruct id a => a
  | Tunion id a => a
  end.

Change the top-level attributes of a type

Definition change_attributes (f: attr -> attr) (ty: type) : type :=
  match ty with
  | Tvoid => ty
  | Tint sz si a => Tint sz si (f a)
  | Tlong si a => Tlong si (f a)
  | Tfloat sz a => Tfloat sz (f a)
  | Tpointer elt a => Tpointer elt (f a)
  | Tarray elt sz a => Tarray elt sz (f a)
  | Tfunction args res cc => ty
  | Tstruct id a => Tstruct id (f a)
  | Tunion id a => Tunion id (f a)
  end.

Erase the top-level attributes of a type

Definition remove_attributes (ty: type) : type :=
  change_attributes (fun _ => noattr) ty.

Add extra attributes to the top-level attributes of a type

Definition attr_union (a1 a2: attr) : attr :=
  {| attr_volatile := a1.(attr_volatile) || a2.(attr_volatile);
     attr_alignas :=
       match a1.(attr_alignas), a2.(attr_alignas) with
       | None, al => al
       | al, None => al
       | Some n1, Some n2 => Some (N.max n1 n2)
       end
  |}.

Definition merge_attributes (ty: type) (a: attr) : type :=
  change_attributes (attr_union a) ty.

Maximal size in bits of a bitfield of type sz.

Definition bitsize_intsize (sz: intsize) : Z :=
  match sz with
  | I8 => 8
  | I16 => 16
  | I32 => 32
  | IBool => 1
  end.

Syntax for struct and union definitions. struct and union are collectively called "composites". Each compilation unit comes with a list of top-level definitions of composites.

Inductive struct_or_union : Type := Struct | Union.

Inductive member : Type :=
  | Member_plain (id: ident) (t: type)
  | Member_bitfield (id: ident) (sz: intsize) (sg: signedness) (a: attr)
                    (width: Z) (padding: bool).

Definition members : Type := list member.

Inductive composite_definition : Type :=
  Composite (id: ident) (su: struct_or_union) (m: members) (a: attr).

Definition name_member (m: member) : ident :=
  match m with
  | Member_plain id _ => id
  | Member_bitfield id _ _ _ _ _ => id
  end.

Definition type_member (m: member) : type :=
  match m with
  | Member_plain _ t => t
  | Member_bitfield _ sz sg a w _ =>
      let sg' := if zlt w (bitsize_intsize sz) then Signed else sg in
      Tint sz sg' a
  end.

Definition member_is_padding (m: member) : bool :=
  match m with
  | Member_plain _ _ => false
  | Member_bitfield _ _ _ _ _ p => p
  end.

Definition name_composite_def (c: composite_definition) : ident :=
  match c with Composite id su m a => id end.

Definition composite_def_eq (x y: composite_definition): {x=y} + {x<>y}.
Proof.
  decide equality.
- decide equality. decide equality. apply N.eq_dec. apply bool_dec.
- apply list_eq_dec. decide equality.
  apply type_eq. apply ident_eq.
  apply bool_dec. apply zeq. apply attr_eq. apply signedness_eq. apply intsize_eq. apply ident_eq.
- decide equality.
- apply ident_eq.
Defined.

Global Opaque composite_def_eq.

For type-checking, compilation and semantics purposes, the composite definitions are collected in the following composite_env environment. The composite record contains additional information compared with the composite_definition, such as size and alignment information.

Record composite : Type := {
  co_su: struct_or_union;
  co_members: members;
  co_attr: attr;
  co_sizeof: Z;
  co_alignof: Z;
  co_rank: nat;
  co_sizeof_pos: co_sizeof >= 0;
  co_alignof_two_p: exists n, co_alignof = two_power_nat n;
  co_sizeof_alignof: (co_alignof | co_sizeof)
}.

Definition composite_env : Type := PTree.t composite.

Access modes for members of structs or unions: either a plain field or a bitfield

Inductive bitfield : Type :=
  | Full
  | Bits (sz: intsize) (sg: signedness) (pos: Z) (width: Z).

Operations over types


Conversions


Definition type_int32s := Tint I32 Signed noattr.
Definition type_bool := Tint IBool Signed noattr.

The usual unary conversion. Promotes small integer types to signed int32 and degrades array types and function types to pointer types. Attributes are erased.

Definition typeconv (ty: type) : type :=
  match ty with
  | Tint (I8 | I16 | IBool) _ _ => Tint I32 Signed noattr
  | Tarray t sz a => Tpointer t noattr
  | Tfunction _ _ _ => Tpointer ty noattr
  | _ => remove_attributes ty
  end.

Default conversion for arguments to an unprototyped or variadic function. Like typeconv but also converts single floats to double floats.

Definition default_argument_conversion (ty: type) : type :=
  match ty with
  | Tint (I8 | I16 | IBool) _ _ => Tint I32 Signed noattr
  | Tfloat _ _ => Tfloat F64 noattr
  | Tarray t sz a => Tpointer t noattr
  | Tfunction _ _ _ => Tpointer ty noattr
  | _ => remove_attributes ty
  end.

Complete types


A type is complete if it fully describes an object. All struct and union names appearing in the type must be defined, unless they occur under a pointer or function type. void and function types are incomplete types.

Fixpoint complete_type (env: composite_env) (t: type) : bool :=
  match t with
  | Tvoid => false
  | Tint _ _ _ => true
  | Tlong _ _ => true
  | Tfloat _ _ => true
  | Tpointer _ _ => true
  | Tarray t' _ _ => complete_type env t'
  | Tfunction _ _ _ => false
  | Tstruct id _ | Tunion id _ =>
      match env!id with Some co => true | None => false end
  end.

Definition complete_or_function_type (env: composite_env) (t: type) : bool :=
  match t with
  | Tfunction _ _ _ => true
  | _ => complete_type env t
  end.

Alignment of a type


Adjust the natural alignment al based on the attributes a attached to the type. If an "alignas" attribute is given, use it as alignment in preference to al.

Definition align_attr (a: attr) (al: Z) : Z :=
  match attr_alignas a with
  | Some l => two_p (Z.of_N l)
  | None => al
  end.

In the ISO C standard, alignment is defined only for complete types. However, it is convenient that alignof is a total function. For incomplete types, it returns 1.

Fixpoint alignof (env: composite_env) (t: type) : Z :=
  align_attr (attr_of_type t)
   (match t with
      | Tvoid => 1
      | Tint I8 _ _ => 1
      | Tint I16 _ _ => 2
      | Tint I32 _ _ => 4
      | Tint IBool _ _ => 1
      | Tlong _ _ => Archi.align_int64
      | Tfloat F32 _ => 4
      | Tfloat F64 _ => Archi.align_float64
      | Tpointer _ _ => if Archi.ptr64 then 8 else 4
      | Tarray t' _ _ => alignof env t'
      | Tfunction _ _ _ => 1
      | Tstruct id _ | Tunion id _ =>
          match env!id with Some co => co_alignof co | None => 1 end
    end).

Remark align_attr_two_p:
  forall al a,
  (exists n, al = two_power_nat n) ->
  (exists n, align_attr a al = two_power_nat n).
Proof.
  intros. unfold align_attr. destruct (attr_alignas a).
  exists (N.to_nat n). rewrite two_power_nat_two_p. rewrite N_nat_Z. auto.
  auto.
Qed.

Lemma alignof_two_p:
  forall env t, exists n, alignof env t = two_power_nat n.
Proof.
  induction t; apply align_attr_two_p; simpl.
  exists 0%nat; auto.
  destruct i.
    exists 0%nat; auto.
    exists 1%nat; auto.
    exists 2%nat; auto.
    exists 0%nat; auto.
    unfold Archi.align_int64. destruct Archi.ptr64; ((exists 2%nat; reflexivity) || (exists 3%nat; reflexivity)).
  destruct f.
    exists 2%nat; auto.
    unfold Archi.align_float64. destruct Archi.ptr64; ((exists 2%nat; reflexivity) || (exists 3%nat; reflexivity)).
  exists (if Archi.ptr64 then 3%nat else 2%nat); destruct Archi.ptr64; auto.
  apply IHt.
  exists 0%nat; auto.
  destruct (env!i). apply co_alignof_two_p. exists 0%nat; auto.
  destruct (env!i). apply co_alignof_two_p. exists 0%nat; auto.
Qed.

Lemma alignof_pos:
  forall env t, alignof env t > 0.
Proof.
  intros. destruct (alignof_two_p env t) as [n EQ]. rewrite EQ. apply two_power_nat_pos.
Qed.

Size of a type


In the ISO C standard, size is defined only for complete types. However, it is convenient that sizeof is a total function. For void and function types, we follow GCC and define their size to be 1. For undefined structures and unions, the size is arbitrarily taken to be 0.

Fixpoint sizeof (env: composite_env) (t: type) : Z :=
  match t with
  | Tvoid => 1
  | Tint I8 _ _ => 1
  | Tint I16 _ _ => 2
  | Tint I32 _ _ => 4
  | Tint IBool _ _ => 1
  | Tlong _ _ => 8
  | Tfloat F32 _ => 4
  | Tfloat F64 _ => 8
  | Tpointer _ _ => if Archi.ptr64 then 8 else 4
  | Tarray t' n _ => sizeof env t' * Z.max 0 n
  | Tfunction _ _ _ => 1
  | Tstruct id _ | Tunion id _ =>
      match env!id with Some co => co_sizeof co | None => 0 end
  end.

Lemma sizeof_pos:
  forall env t, sizeof env t >= 0.
Proof.
  induction t; simpl.
- lia.
- destruct i; lia.
- lia.
- destruct f; lia.
- destruct Archi.ptr64; lia.
- change 0 with (0 * Z.max 0 z) at 2. apply Zmult_ge_compat_r. auto. lia.
- lia.
- destruct (env!i). apply co_sizeof_pos. lia.
- destruct (env!i). apply co_sizeof_pos. lia.
Qed.

The size of a type is an integral multiple of its alignment, unless the alignment was artificially increased with the __Alignas attribute.

Fixpoint naturally_aligned (t: type) : Prop :=
  attr_alignas (attr_of_type t) = None /\
  match t with
  | Tarray t' _ _ => naturally_aligned t'
  | _ => True
  end.

Lemma sizeof_alignof_compat:
  forall env t, naturally_aligned t -> (alignof env t | sizeof env t).
Proof.
  induction t; intros [A B]; unfold alignof, align_attr; rewrite A; simpl.
- apply Z.divide_refl.
- destruct i; apply Z.divide_refl.
- exists (8 / Archi.align_int64). unfold Archi.align_int64; destruct Archi.ptr64; reflexivity.
- destruct f. apply Z.divide_refl. exists (8 / Archi.align_float64). unfold Archi.align_float64; destruct Archi.ptr64; reflexivity.
- apply Z.divide_refl.
- apply Z.divide_mul_l; auto.
- apply Z.divide_refl.
- destruct (env!i). apply co_sizeof_alignof. apply Z.divide_0_r.
- destruct (env!i). apply co_sizeof_alignof. apply Z.divide_0_r.
Qed.

Layout of struct fields


Section LAYOUT.

Variable env: composite_env.

Definition bitalignof (t: type) := alignof env t * 8.

Definition bitsizeof (t: type) := sizeof env t * 8.

Definition bitalignof_intsize (sz: intsize) : Z :=
  match sz with
  | I8 | IBool => 8
  | I16 => 16
  | I32 => 32
  end.

Definition next_field (pos: Z) (m: member) : Z :=
  match m with
  | Member_plain _ t =>
      align pos (bitalignof t) + bitsizeof t
  | Member_bitfield _ sz _ _ w _ =>
      let s := bitalignof_intsize sz in
      if zle w 0 then
        align pos s
      else
        let curr := floor pos s in
        let next := curr + s in
        if zle (pos + w) next then pos + w else next + w
  end.

Definition layout_field (pos: Z) (m: member) : res (Z * bitfield) :=
  match m with
  | Member_plain _ t =>
      OK (align pos (bitalignof t) / 8, Full)
  | Member_bitfield _ sz sg _ w _ =>
      if zle w 0 then Error (msg "accessing zero-width bitfield")
      else if zlt (bitsize_intsize sz) w then Error (msg "bitfield too wide")
      else
        let s := bitalignof_intsize sz in
        let start := floor pos s in
        let next := start + s in
        if zle (pos + w) next then
          OK (start / 8, Bits sz sg (pos - start) w)
        else
          OK (next / 8, Bits sz sg 0 w)
  end.

Some properties

Lemma bitalignof_intsize_pos:
  forall sz, bitalignof_intsize sz > 0.
Proof.
  destruct sz; simpl; lia.
Qed.

Lemma next_field_incr:
  forall pos m, pos <= next_field pos m.
Proof.
  intros. unfold next_field. destruct m.
- set (al := bitalignof t).
  assert (A: al > 0).
  { unfold al, bitalignof. generalize (alignof_pos env t). lia. }
  assert (pos <= align pos al) by (apply align_le; auto).
  assert (bitsizeof t >= 0).
  { unfold bitsizeof. generalize (sizeof_pos env t). lia. }
  lia.
- set (s := bitalignof_intsize sz).
  assert (A: s > 0) by (apply bitalignof_intsize_pos).
  destruct (zle width 0).
+ apply align_le; auto.
+ generalize (floor_interval pos s A).
  set (start := floor pos s). intros B.
  destruct (zle (pos + width) (start + s)); lia.
Qed.

Definition layout_start (p: Z) (bf: bitfield) :=
  p * 8 + match bf with Full => 0 | Bits sz sg pos w => pos end.

Definition layout_width (t: type) (bf: bitfield) :=
  match bf with Full => bitsizeof t | Bits sz sg pos w => w end.

Lemma layout_field_range: forall pos m ofs bf,
  layout_field pos m = OK (ofs, bf) ->
  pos <= layout_start ofs bf
  /\ layout_start ofs bf + layout_width (type_member m) bf <= next_field pos m.
Proof.
  intros until bf; intros L. unfold layout_start, layout_width. destruct m; simpl in L.
- inv L. simpl.
  set (al := bitalignof t).
  set (q := align pos al).
  assert (A: al > 0).
  { unfold al, bitalignof. generalize (alignof_pos env t). lia. }
  assert (B: pos <= q) by (apply align_le; auto).
  assert (C: (al | q)) by (apply align_divides; auto).
  assert (D: (8 | q)).
  { apply Z.divide_transitive with al; auto. apply Z.divide_factor_r. }
  assert (E: q / 8 * 8 = q).
  { destruct D as (n & E). rewrite E. rewrite Z.div_mul by lia. auto. }
  rewrite E. lia.
- unfold next_field.
  destruct (zle width 0); try discriminate.
  destruct (zlt (bitsize_intsize sz) width); try discriminate.
  set (s := bitalignof_intsize sz) in *.
  assert (A: s > 0) by (apply bitalignof_intsize_pos).
  generalize (floor_interval pos s A). set (p := floor pos s) in *. intros B.
  assert (C: (s | p)) by (apply floor_divides; auto).
  assert (D: (8 | s)).
  { exists (s / 8). unfold s. destruct sz; reflexivity. }
  assert (E: (8 | p)) by (apply Z.divide_transitive with s; auto).
  assert (F: (8 | p + s)) by (apply Z.divide_add_r; auto).
  assert (G: p / 8 * 8 = p).
  { destruct E as (n & EQ). rewrite EQ. rewrite Z.div_mul by lia. auto. }
  assert (H: (p + s) / 8 * 8 = p + s).
  { destruct F as (n & EQ). rewrite EQ. rewrite Z.div_mul by lia. auto. }
  destruct (zle (pos + width) (p + s)); inv L; lia.
Qed.

Definition layout_alignment (t: type) (bf: bitfield) :=
  match bf with
  | Full => alignof env t
  | Bits sz _ _ _ => bitalignof_intsize sz / 8
  end.

Lemma layout_field_alignment: forall pos m ofs bf,
  layout_field pos m = OK (ofs, bf) ->
  (layout_alignment (type_member m) bf | ofs).
Proof.
  intros until bf; intros L. destruct m; simpl in L.
- inv L; simpl.
  set (q := align pos (bitalignof t)).
  assert (A: (bitalignof t | q)).
  { apply align_divides. unfold bitalignof. generalize (alignof_pos env t). lia. }
  destruct A as [n E]. exists n. rewrite E. unfold bitalignof. rewrite Z.mul_assoc, Z.div_mul by lia. auto.
- destruct (zle width 0); try discriminate.
  destruct (zlt (bitsize_intsize sz) width); try discriminate.
  set (s := bitalignof_intsize sz) in *.
  assert (A: s > 0) by (apply bitalignof_intsize_pos).
  set (p := floor pos s) in *.
  assert (C: (s | p)) by (apply floor_divides; auto).
  assert (D: (8 | s)).
  { exists (s / 8). unfold s. destruct sz; reflexivity. }
  assert (E: forall n, (s | n) -> (s / 8 | n / 8)).
  { intros. destruct H as [n1 E1], D as [n2 E2]. rewrite E1, E2.
    rewrite Z.mul_assoc, ! Z.div_mul by lia. exists n1; auto. }
  destruct (zle (pos + width) (p + s)); inv L; simpl; fold s.
  + apply E. auto.
  + apply E. apply Z.divide_add_r; auto using Z.divide_refl.
Qed.

End LAYOUT.

Size and alignment for composite definitions


The alignment for a structure or union is the max of the alignment of its members. Padding bitfields are ignored.

Fixpoint alignof_composite (env: composite_env) (ms: members) : Z :=
  match ms with
  | nil => 1
  | m :: ms =>
     if member_is_padding m
     then alignof_composite env ms
     else Z.max (alignof env (type_member m)) (alignof_composite env ms)
  end.

The size of a structure corresponds to its layout: fields are laid out consecutively, and padding is inserted to align each field to the alignment for its type. Bitfields are packed as described above.

Fixpoint bitsizeof_struct (env: composite_env) (cur: Z) (ms: members) : Z :=
  match ms with
  | nil => cur
  | m :: ms => bitsizeof_struct env (next_field env cur m) ms
  end.

Definition bytes_of_bits (n: Z) := (n + 7) / 8.

Definition sizeof_struct (env: composite_env) (m: members) : Z :=
  bytes_of_bits (bitsizeof_struct env 0 m).

The size of an union is the max of the sizes of its members.

Fixpoint sizeof_union (env: composite_env) (ms: members) : Z :=
  match ms with
  | nil => 0
  | m :: ms => Z.max (sizeof env (type_member m)) (sizeof_union env ms)
  end.

Some properties

Lemma alignof_composite_two_p:
  forall env m, exists n, alignof_composite env m = two_power_nat n.
Proof.
  induction m; simpl.
- exists 0%nat; auto.
- destruct (member_is_padding a); auto.
  apply Z.max_case; auto. apply alignof_two_p.
Qed.

Lemma alignof_composite_pos:
  forall env m a, align_attr a (alignof_composite env m) > 0.
Proof.
  intros.
  exploit align_attr_two_p. apply (alignof_composite_two_p env m).
  instantiate (1 := a). intros [n EQ].
  rewrite EQ; apply two_power_nat_pos.
Qed.

Lemma bitsizeof_struct_incr:
  forall env m cur, cur <= bitsizeof_struct env cur m.
Proof.
  induction m; simpl; intros.
- lia.
- apply Z.le_trans with (next_field env cur a).
  apply next_field_incr. apply IHm.
Qed.

Lemma sizeof_union_pos:
  forall env m, 0 <= sizeof_union env m.
Proof.
  induction m; simpl; extlia.
Qed.

Byte offset and bitfield designator for a field of a structure


Fixpoint field_type (id: ident) (ms: members) {struct ms} : res type :=
  match ms with
  | nil => Error (MSG "Unknown field " :: CTX id :: nil)
  | m :: ms => if ident_eq id (name_member m) then OK (type_member m) else field_type id ms
  end.

field_offset env id fld returns the byte offset for field id in a structure whose members are fld. It also returns a bitfield designator, giving the location of the bits to access within the storage unit for the bitfield.

Fixpoint field_offset_rec (env: composite_env) (id: ident) (ms: members) (pos: Z)
                          {struct ms} : res (Z * bitfield) :=
  match ms with
  | nil => Error (MSG "Unknown field " :: CTX id :: nil)
  | m :: ms =>
      if ident_eq id (name_member m)
      then layout_field env pos m
      else field_offset_rec env id ms (next_field env pos m)
  end.

Definition field_offset (env: composite_env) (id: ident) (ms: members) : res (Z * bitfield) :=
  field_offset_rec env id ms 0.

Definition field_zero_or_padding (m: member) : bool :=
  match m with
  | Member_plain _ _ => false
  | Member_bitfield _ _ _ _ w p => orb (zle w 0) p
  end.

layout_struct env ms accu pos computes the layout of all fields of a struct that are not unnamed or zero width bitfield members
Fixpoint layout_struct_rec (env: composite_env) (ms: members)
                           (accu: list (ident * Z * bitfield)) (pos: Z)
                           {struct ms} : res (list (ident * Z * bitfield)) :=
  match ms with
  | nil => OK accu
  | m :: ms =>
      if field_zero_or_padding m then
        layout_struct_rec env ms accu (next_field env pos m)
      else
        do (p, b) <- layout_field env pos m;
        layout_struct_rec env ms (((name_member m), p ,b) :: accu) (next_field env pos m)
  end.

Definition layout_struct (env: composite_env) (ms: members) : res (list (ident * Z * bitfield)) :=
  layout_struct_rec env ms nil 0.

Some sanity checks about field offsets. First, field offsets are within the range of acceptable offsets.

Remark field_offset_rec_in_range:
  forall env id ofs bf ty ms pos,
  field_offset_rec env id ms pos = OK (ofs, bf) -> field_type id ms = OK ty ->
  pos <= layout_start ofs bf
  /\ layout_start ofs bf + layout_width env ty bf <= bitsizeof_struct env pos ms.
Proof.
  induction ms as [ | m ms]; simpl; intros.
- discriminate.
- destruct (ident_eq id (name_member m)).
  + inv H0.
    exploit layout_field_range; eauto.
    generalize (bitsizeof_struct_incr env ms (next_field env pos m)).
    lia.
  + exploit IHms; eauto.
    generalize (next_field_incr env pos m).
    lia.
Qed.

Lemma field_offset_in_range_gen:
  forall env ms id ofs bf ty,
  field_offset env id ms = OK (ofs, bf) -> field_type id ms = OK ty ->
  0 <= layout_start ofs bf
  /\ layout_start ofs bf + layout_width env ty bf <= bitsizeof_struct env 0 ms.
Proof.
  intros. eapply field_offset_rec_in_range; eauto.
Qed.

Corollary field_offset_in_range:
  forall env ms id ofs ty,
  field_offset env id ms = OK (ofs, Full) -> field_type id ms = OK ty ->
  0 <= ofs /\ ofs + sizeof env ty <= sizeof_struct env ms.
Proof.
  intros. exploit field_offset_in_range_gen; eauto.
  unfold layout_start, layout_width, bitsizeof, sizeof_struct. intros [A B].
  assert (C: forall x y, x * 8 <= y -> x <= bytes_of_bits y).
  { unfold bytes_of_bits; intros.
    assert (P: 8 > 0) by lia.
    generalize (Z_div_mod_eq (y + 7) 8 P) (Z_mod_lt (y + 7) 8 P).
    lia. }
  split. lia. apply C. lia.
Qed.

Second, two distinct fields do not overlap

Lemma field_offset_no_overlap:
  forall env id1 ofs1 bf1 ty1 id2 ofs2 bf2 ty2 fld,
  field_offset env id1 fld = OK (ofs1, bf1) -> field_type id1 fld = OK ty1 ->
  field_offset env id2 fld = OK (ofs2, bf2) -> field_type id2 fld = OK ty2 ->
  id1 <> id2 ->
  layout_start ofs1 bf1 + layout_width env ty1 bf1 <= layout_start ofs2 bf2
  \/ layout_start ofs2 bf2 + layout_width env ty2 bf2 <= layout_start ofs1 bf1.
Proof.
  intros until fld. unfold field_offset. generalize 0 as pos.
  induction fld as [|m fld]; simpl; intros.
- discriminate.
- destruct (ident_eq id1 (name_member m)); destruct (ident_eq id2 (name_member m)).
+ congruence.
+ inv H0.
  exploit field_offset_rec_in_range; eauto.
  exploit layout_field_range; eauto. lia.
+ inv H2.
  exploit field_offset_rec_in_range; eauto.
  exploit layout_field_range; eauto. lia.
+ eapply IHfld; eauto.
Qed.

Third, if a struct is a prefix of another, the offsets of common fields are the same.

Lemma field_offset_prefix:
  forall env id ofs bf fld2 fld1,
  field_offset env id fld1 = OK (ofs, bf) ->
  field_offset env id (fld1 ++ fld2) = OK (ofs, bf).
Proof.
  intros until fld1. unfold field_offset. generalize 0 as pos.
  induction fld1 as [|m fld1]; simpl; intros.
- discriminate.
- destruct (ident_eq id (name_member m)); auto.
Qed.

Fourth, the position of each field respects its alignment.

Lemma field_offset_aligned_gen:
  forall env id fld ofs bf ty,
  field_offset env id fld = OK (ofs, bf) -> field_type id fld = OK ty ->
  (layout_alignment env ty bf | ofs).
Proof.
  intros until ty. unfold field_offset. generalize 0 as pos. revert fld.
  induction fld as [|m fld]; simpl; intros.
- discriminate.
- destruct (ident_eq id (name_member m)).
+ inv H0. eapply layout_field_alignment; eauto.
+ eauto.
Qed.

Corollary field_offset_aligned:
  forall env id fld ofs ty,
  field_offset env id fld = OK (ofs, Full) -> field_type id fld = OK ty ->
  (alignof env ty | ofs).
Proof.
  intros. exploit field_offset_aligned_gen; eauto.
Qed.

union_field_offset env id ms returns the byte offset and bitfield designator for accessing a member named id of a union whose members are ms. The byte offset is always 0.

Fixpoint union_field_offset (env: composite_env) (id: ident) (ms: members)
                          {struct ms} : res (Z * bitfield) :=
  match ms with
  | nil => Error (MSG "Unknown field " :: CTX id :: nil)
  | m :: ms =>
      if ident_eq id (name_member m)
      then layout_field env 0 m
      else union_field_offset env id ms
  end.

Some sanity checks about union field offsets. First, field offsets fit within the size of the union.

Lemma union_field_offset_in_range_gen:
  forall env id ofs bf ty ms,
  union_field_offset env id ms = OK (ofs, bf) -> field_type id ms = OK ty ->
  ofs = 0 /\ 0 <= layout_start ofs bf /\ layout_start ofs bf + layout_width env ty bf <= sizeof_union env ms * 8.
Proof.
  induction ms as [ | m ms]; simpl; intros.
- discriminate.
- destruct (ident_eq id (name_member m)).
  + inv H0. set (ty := type_member m) in *.
    destruct m; simpl in H.
    * inv H. unfold layout_start, layout_width.
      rewrite align_same. change (0 / 8) with 0. unfold bitsizeof. lia.
      unfold bitalignof. generalize (alignof_pos env t). lia.
      apply Z.divide_0_r.
    * destruct (zle width 0); try discriminate.
      destruct (zlt (bitsize_intsize sz) width); try discriminate.
      assert (A: bitsize_intsize sz <= bitalignof_intsize sz <= sizeof env ty * 8).
      { unfold ty, type_member; destruct sz; simpl; lia. }
      rewrite zle_true in H by lia. inv H.
      unfold layout_start, layout_width.
      unfold floor; rewrite Z.div_0_l by lia.
      lia.
  + exploit IHms; eauto. lia.
Qed.

Corollary union_field_offset_in_range:
  forall env ms id ofs ty,
  union_field_offset env id ms = OK (ofs, Full) -> field_type id ms = OK ty ->
  ofs = 0 /\ sizeof env ty <= sizeof_union env ms.
Proof.
  intros. exploit union_field_offset_in_range_gen; eauto.
  unfold layout_start, layout_width, bitsizeof. lia.
Qed.

Access modes


The access_mode function describes how a l-value of the given type must be accessed:

Inductive mode: Type :=
  | By_value: memory_chunk -> mode
  | By_reference: mode
  | By_copy: mode
  | By_nothing: mode.

Definition access_mode (ty: type) : mode :=
  match ty with
  | Tint I8 Signed _ => By_value Mint8signed
  | Tint I8 Unsigned _ => By_value Mint8unsigned
  | Tint I16 Signed _ => By_value Mint16signed
  | Tint I16 Unsigned _ => By_value Mint16unsigned
  | Tint I32 _ _ => By_value Mint32
  | Tint IBool _ _ => By_value Mint8unsigned
  | Tlong _ _ => By_value Mint64
  | Tfloat F32 _ => By_value Mfloat32
  | Tfloat F64 _ => By_value Mfloat64
  | Tvoid => By_nothing
  | Tpointer _ _ => By_value Mptr
  | Tarray _ _ _ => By_reference
  | Tfunction _ _ _ => By_reference
  | Tstruct _ _ => By_copy
  | Tunion _ _ => By_copy
end.

For the purposes of the semantics and the compiler, a type denotes a volatile access if it carries the volatile attribute and it is accessed by value.

Definition type_is_volatile (ty: type) : bool :=
  match access_mode ty with
  | By_value _ => attr_volatile (attr_of_type ty)
  | _ => false
  end.

Alignment for block copy operations


A variant of alignof for use in block copy operations. Block copy operations do not support alignments greater than 8, and require the size to be an integral multiple of the alignment.

Fixpoint alignof_blockcopy (env: composite_env) (t: type) : Z :=
  match t with
  | Tvoid => 1
  | Tint I8 _ _ => 1
  | Tint I16 _ _ => 2
  | Tint I32 _ _ => 4
  | Tint IBool _ _ => 1
  | Tlong _ _ => 8
  | Tfloat F32 _ => 4
  | Tfloat F64 _ => 8
  | Tpointer _ _ => if Archi.ptr64 then 8 else 4
  | Tarray t' _ _ => alignof_blockcopy env t'
  | Tfunction _ _ _ => 1
  | Tstruct id _ | Tunion id _ =>
      match env!id with
      | Some co => Z.min 8 (co_alignof co)
      | None => 1
      end
  end.

Lemma alignof_blockcopy_1248:
  forall env ty, let a := alignof_blockcopy env ty in a = 1 \/ a = 2 \/ a = 4 \/ a = 8.
Proof.
  assert (X: forall co, let a := Z.min 8 (co_alignof co) in
             a = 1 \/ a = 2 \/ a = 4 \/ a = 8).
  {
    intros. destruct (co_alignof_two_p co) as [n EQ]. unfold a; rewrite EQ.
    destruct n; auto.
    destruct n; auto.
    destruct n; auto.
    right; right; right. apply Z.min_l.
    rewrite two_power_nat_two_p. rewrite ! Nat2Z.inj_succ.
    change 8 with (two_p 3). apply two_p_monotone. lia.
  }
  induction ty; simpl.
  auto.
  destruct i; auto.
  auto.
  destruct f; auto.
  destruct Archi.ptr64; auto.
  apply IHty.
  auto.
  destruct (env!i); auto.
  destruct (env!i); auto.
Qed.

Lemma alignof_blockcopy_pos:
  forall env ty, alignof_blockcopy env ty > 0.
Proof.
  intros. generalize (alignof_blockcopy_1248 env ty). simpl. intuition lia.
Qed.

Lemma sizeof_alignof_blockcopy_compat:
  forall env ty, (alignof_blockcopy env ty | sizeof env ty).
Proof.
  assert (X: forall co, (Z.min 8 (co_alignof co) | co_sizeof co)).
  {
    intros. apply Z.divide_trans with (co_alignof co). 2: apply co_sizeof_alignof.
    destruct (co_alignof_two_p co) as [n EQ]. rewrite EQ.
    destruct n. apply Z.divide_refl.
    destruct n. apply Z.divide_refl.
    destruct n. apply Z.divide_refl.
    apply Z.min_case.
    exists (two_p (Z.of_nat n)).
    change 8 with (two_p 3).
    rewrite <- two_p_is_exp by lia.
    rewrite two_power_nat_two_p. rewrite !Nat2Z.inj_succ. f_equal. lia.
    apply Z.divide_refl.
  }
  induction ty; simpl.
  apply Z.divide_refl.
  apply Z.divide_refl.
  apply Z.divide_refl.
  apply Z.divide_refl.
  apply Z.divide_refl.
  apply Z.divide_mul_l. auto.
  apply Z.divide_refl.
  destruct (env!i). apply X. apply Z.divide_0_r.
  destruct (env!i). apply X. apply Z.divide_0_r.
Qed.

Type ranks

The rank of a type is a nonnegative integer that measures the direct nesting of arrays, struct and union types. It does not take into account indirect nesting such as a struct type that appears under a pointer or function type. Type ranks ensure that type expressions (ignoring pointer and function types) have an inductive structure.

Fixpoint rank_type (ce: composite_env) (t: type) : nat :=
  match t with
  | Tarray t' _ _ => S (rank_type ce t')
  | Tstruct id _ | Tunion id _ =>
      match ce!id with
      | None => O
      | Some co => S (co_rank co)
      end
  | _ => O
  end.

Fixpoint rank_members (ce: composite_env) (m: members) : nat :=
  match m with
  | nil => 0%nat
  | Member_plain _ t :: m => Init.Nat.max (rank_type ce t) (rank_members ce m)
  | Member_bitfield _ _ _ _ _ _ :: m => rank_members ce m
  end.

C types and back-end types


Extracting a type list from a function parameter declaration.

Fixpoint type_of_params (params: list (ident * type)) : typelist :=
  match params with
  | nil => Tnil
  | (id, ty) :: rem => Tcons ty (type_of_params rem)
  end.

Translating C types to Cminor types and function signatures.

Definition typ_of_type (t: type) : AST.typ :=
  match t with
  | Tvoid => AST.Tint
  | Tint _ _ _ => AST.Tint
  | Tlong _ _ => AST.Tlong
  | Tfloat F32 _ => AST.Tsingle
  | Tfloat F64 _ => AST.Tfloat
  | Tpointer _ _ | Tarray _ _ _ | Tfunction _ _ _ | Tstruct _ _ | Tunion _ _ => AST.Tptr
  end.

Definition rettype_of_type (t: type) : AST.rettype :=
  match t with
  | Tvoid => AST.Tvoid
  | Tint I32 _ _ => AST.Tint
  | Tint I8 Signed _ => AST.Tint8signed
  | Tint I8 Unsigned _ => AST.Tint8unsigned
  | Tint I16 Signed _ => AST.Tint16signed
  | Tint I16 Unsigned _ => AST.Tint16unsigned
  | Tint IBool _ _ => AST.Tint8unsigned
  | Tlong _ _ => AST.Tlong
  | Tfloat F32 _ => AST.Tsingle
  | Tfloat F64 _ => AST.Tfloat
  | Tpointer _ _ => AST.Tptr
  | Tarray _ _ _ | Tfunction _ _ _ | Tstruct _ _ | Tunion _ _ => AST.Tvoid
  end.

Fixpoint typlist_of_typelist (tl: typelist) : list AST.typ :=
  match tl with
  | Tnil => nil
  | Tcons hd tl => typ_of_type hd :: typlist_of_typelist tl
  end.

Definition signature_of_type (args: typelist) (res: type) (cc: calling_convention): signature :=
  mksignature (typlist_of_typelist args) (rettype_of_type res) cc.

Construction of the composite environment


Definition sizeof_composite (env: composite_env) (su: struct_or_union) (m: members) : Z :=
  match su with
  | Struct => sizeof_struct env m
  | Union => sizeof_union env m
  end.

Lemma sizeof_composite_pos:
  forall env su m, 0 <= sizeof_composite env su m.
Proof.
  intros. destruct su; simpl.
- unfold sizeof_struct, bytes_of_bits.
  assert (0 <= bitsizeof_struct env 0 m) by apply bitsizeof_struct_incr.
  change 0 with (0 / 8) at 1. apply Z.div_le_mono; lia.
- apply sizeof_union_pos.
Qed.

Fixpoint complete_members (env: composite_env) (ms: members) : bool :=
  match ms with
  | nil => true
  | m :: ms => complete_type env (type_member m) && complete_members env ms
  end.

Lemma complete_member:
  forall env m ms,
  In m ms -> complete_members env ms = true -> complete_type env (type_member m) = true.
Proof.
  induction ms as [|m1 ms]; simpl; intuition auto.
  InvBooleans; inv H1; auto.
  InvBooleans; eauto.
Qed.

Convert a composite definition to its internal representation. The size and alignment of the composite are determined at this time. The alignment takes into account the __Alignas attributes associated with the definition. The size is rounded up to a multiple of the alignment. The conversion fails if a type of a member is not complete. This rules out incorrect recursive definitions such as
    struct s { int x; struct s next; }
Here, when we process the definition of struct s, the identifier s is not bound yet in the composite environment, hence field next has an incomplete type. However, recursions that go through a pointer type are correctly handled:
    struct s { int x; struct s * next; }
Here, next has a pointer type, which is always complete, even though s is not yet bound to a composite.

Program Definition composite_of_def
     (env: composite_env) (id: ident) (su: struct_or_union) (m: members) (a: attr)
     : res composite :=
  match env!id, complete_members env m return _ with
  | Some _, _ =>
      Error (MSG "Multiple definitions of struct or union " :: CTX id :: nil)
  | None, false =>
      Error (MSG "Incomplete struct or union " :: CTX id :: nil)
  | None, true =>
      let al := align_attr a (alignof_composite env m) in
      OK {| co_su := su;
            co_members := m;
            co_attr := a;
            co_sizeof := align (sizeof_composite env su m) al;
            co_alignof := al;
            co_rank := rank_members env m;
            co_sizeof_pos := _;
            co_alignof_two_p := _;
            co_sizeof_alignof := _ |}
  end.
Next Obligation.
  apply Z.le_ge. eapply Z.le_trans. eapply sizeof_composite_pos.
  apply align_le; apply alignof_composite_pos.
Defined.
Next Obligation.
  apply align_attr_two_p. apply alignof_composite_two_p.
Defined.
Next Obligation.
  apply align_divides. apply alignof_composite_pos.
Defined.

The composite environment for a program is obtained by entering its composite definitions in sequence. The definitions are assumed to be listed in dependency order: the definition of a composite must precede all uses of this composite, unless the use is under a pointer or function type.

Fixpoint add_composite_definitions (env: composite_env) (defs: list composite_definition) : res composite_env :=
  match defs with
  | nil => OK env
  | Composite id su m a :: defs =>
      do co <- composite_of_def env id su m a;
      add_composite_definitions (PTree.set id co env) defs
  end.

Definition build_composite_env (defs: list composite_definition) :=
  add_composite_definitions (PTree.empty _) defs.

Stability properties for alignments, sizes, and ranks. If the type is complete in a composite environment env, its size, alignment, and rank are unchanged if we add more definitions to env.

Section STABILITY.

Variables env env': composite_env.
Hypothesis extends: forall id co, env!id = Some co -> env'!id = Some co.

Lemma alignof_stable:
  forall t, complete_type env t = true -> alignof env' t = alignof env t.
Proof.
  induction t; simpl; intros; f_equal; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma sizeof_stable:
  forall t, complete_type env t = true -> sizeof env' t = sizeof env t.
Proof.
  induction t; simpl; intros; auto.
  rewrite IHt by auto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma complete_type_stable:
  forall t, complete_type env t = true -> complete_type env' t = true.
Proof.
  induction t; simpl; intros; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma rank_type_stable:
  forall t, complete_type env t = true -> rank_type env' t = rank_type env t.
Proof.
  induction t; simpl; intros; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma alignof_composite_stable:
  forall ms, complete_members env ms = true -> alignof_composite env' ms = alignof_composite env ms.
Proof.
  induction ms as [|m ms]; simpl; intros.
  auto.
  InvBooleans. rewrite alignof_stable by auto. rewrite IHms by auto. auto.
Qed.

Remark next_field_stable: forall pos m,
  complete_type env (type_member m) = true -> next_field env' pos m = next_field env pos m.
Proof.
  destruct m; simpl; intros.
- unfold bitalignof, bitsizeof. rewrite alignof_stable, sizeof_stable by auto. auto.
- auto.
Qed.

Lemma bitsizeof_struct_stable:
  forall ms pos, complete_members env ms = true -> bitsizeof_struct env' pos ms = bitsizeof_struct env pos ms.
Proof.
  induction ms as [|m ms]; simpl; intros.
  auto.
  InvBooleans. rewrite next_field_stable by auto. apply IHms; auto.
Qed.

Lemma sizeof_union_stable:
  forall ms, complete_members env ms = true -> sizeof_union env' ms = sizeof_union env ms.
Proof.
  induction ms as [|m ms]; simpl; intros.
  auto.
  InvBooleans. rewrite sizeof_stable by auto. rewrite IHms by auto. auto.
Qed.

Lemma sizeof_composite_stable:
  forall su ms, complete_members env ms = true -> sizeof_composite env' su ms = sizeof_composite env su ms.
Proof.
  intros. destruct su; simpl.
  unfold sizeof_struct. f_equal. apply bitsizeof_struct_stable; auto.
  apply sizeof_union_stable; auto.
Qed.

Lemma complete_members_stable:
  forall ms, complete_members env ms = true -> complete_members env' ms = true.
Proof.
  induction ms as [|m ms]; simpl; intros.
  auto.
  InvBooleans. rewrite complete_type_stable by auto. rewrite IHms by auto. auto.
Qed.

Lemma rank_members_stable:
  forall ms, complete_members env ms = true -> rank_members env' ms = rank_members env ms.
Proof.
  induction ms as [|m ms]; simpl; intros.
  auto.
  InvBooleans. destruct m; auto. f_equal; auto. apply rank_type_stable; auto.
Qed.

Remark layout_field_stable: forall pos m,
  complete_type env (type_member m) = true -> layout_field env' pos m = layout_field env pos m.
Proof.
  destruct m; simpl; intros.
- unfold bitalignof. rewrite alignof_stable by auto. auto.
- auto.
Qed.

Lemma field_offset_stable:
  forall f ms, complete_members env ms = true -> field_offset env' f ms = field_offset env f ms.
Proof.
  intros until ms. unfold field_offset. generalize 0.
  induction ms as [|m ms]; simpl; intros.
- auto.
- InvBooleans. destruct (ident_eq f (name_member m)).
  apply layout_field_stable; auto.
  rewrite next_field_stable by auto. apply IHms; auto.
Qed.

Lemma union_field_offset_stable:
  forall f ms, complete_members env ms = true -> union_field_offset env' f ms = union_field_offset env f ms.
Proof.
  induction ms as [|m ms]; simpl; intros.
- auto.
- InvBooleans. destruct (ident_eq f (name_member m)).
  apply layout_field_stable; auto.
  apply IHms; auto.
Qed.

End STABILITY.

Lemma add_composite_definitions_incr:
  forall id co defs env1 env2,
  add_composite_definitions env1 defs = OK env2 ->
  env1!id = Some co -> env2!id = Some co.
Proof.
  induction defs; simpl; intros.
- inv H; auto.
- destruct a; monadInv H.
  eapply IHdefs; eauto. rewrite PTree.gso; auto.
  red; intros; subst id0. unfold composite_of_def in EQ. rewrite H0 in EQ; discriminate.
Qed.

It follows that the sizes and alignments contained in the composite environment produced by build_composite_env are consistent with the sizes and alignments of the members of the composite types.

Record composite_consistent (env: composite_env) (co: composite) : Prop := {
  co_consistent_complete:
     complete_members env (co_members co) = true;
  co_consistent_alignof:
     co_alignof co = align_attr (co_attr co) (alignof_composite env (co_members co));
  co_consistent_sizeof:
     co_sizeof co = align (sizeof_composite env (co_su co) (co_members co)) (co_alignof co);
  co_consistent_rank:
     co_rank co = rank_members env (co_members co)
}.

Definition composite_env_consistent (env: composite_env) : Prop :=
  forall id co, env!id = Some co -> composite_consistent env co.

Lemma composite_consistent_stable:
  forall (env env': composite_env)
         (EXTENDS: forall id co, env!id = Some co -> env'!id = Some co)
         co,
  composite_consistent env co -> composite_consistent env' co.
Proof.
  intros. destruct H as [A B C D]. constructor.
  eapply complete_members_stable; eauto.
  symmetry; rewrite B. f_equal. apply alignof_composite_stable; auto.
  symmetry; rewrite C. f_equal. apply sizeof_composite_stable; auto.
  symmetry; rewrite D. apply rank_members_stable; auto.
Qed.

Lemma composite_of_def_consistent:
  forall env id su m a co,
  composite_of_def env id su m a = OK co ->
  composite_consistent env co.
Proof.
  unfold composite_of_def; intros.
  destruct (env!id); try discriminate. destruct (complete_members env m) eqn:C; inv H.
  constructor; auto.
Qed.

Theorem build_composite_env_consistent:
  forall defs env, build_composite_env defs = OK env -> composite_env_consistent env.
Proof.
  cut (forall defs env0 env,
       add_composite_definitions env0 defs = OK env ->
       composite_env_consistent env0 ->
       composite_env_consistent env).
  intros. eapply H; eauto. red; intros. rewrite PTree.gempty in H1; discriminate.
  induction defs as [|d1 defs]; simpl; intros.
- inv H; auto.
- destruct d1; monadInv H.
  eapply IHdefs; eauto.
  set (env1 := PTree.set id x env0) in *.
  assert (env0!id = None).
  { unfold composite_of_def in EQ. destruct (env0!id). discriminate. auto. }
  assert (forall id1 co1, env0!id1 = Some co1 -> env1!id1 = Some co1).
  { intros. unfold env1. rewrite PTree.gso; auto. congruence. }
  red; intros. apply composite_consistent_stable with env0; auto.
  unfold env1 in H2; rewrite PTree.gsspec in H2; destruct (peq id0 id).
+ subst id0. inversion H2; clear H2. subst co.
  eapply composite_of_def_consistent; eauto.
+ eapply H0; eauto.
Qed.

Moreover, every composite definition is reflected in the composite environment.

Theorem build_composite_env_charact:
  forall id su m a defs env,
  build_composite_env defs = OK env ->
  In (Composite id su m a) defs ->
  exists co, env!id = Some co /\ co_members co = m /\ co_attr co = a /\ co_su co = su.
Proof.
  intros until defs. unfold build_composite_env. generalize (PTree.empty composite) as env0.
  revert defs. induction defs as [|d1 defs]; simpl; intros.
- contradiction.
- destruct d1; monadInv H.
  destruct H0; [idtac|eapply IHdefs;eauto]. inv H.
  unfold composite_of_def in EQ.
  destruct (env0!id) eqn:E; try discriminate.
  destruct (complete_members env0 m) eqn:C; simplify_eq EQ. clear EQ; intros EQ.
  exists x.
  split. eapply add_composite_definitions_incr; eauto. apply PTree.gss.
  subst x; auto.
Qed.

Theorem build_composite_env_domain:
  forall env defs id co,
  build_composite_env defs = OK env ->
  env!id = Some co ->
  In (Composite id (co_su co) (co_members co) (co_attr co)) defs.
Proof.
  intros env0 defs0 id co.
  assert (REC: forall l env env',
    add_composite_definitions env l = OK env' ->
    env'!id = Some co ->
    env!id = Some co \/ In (Composite id (co_su co) (co_members co) (co_attr co)) l).
  { induction l; simpl; intros.
  - inv H; auto.
  - destruct a; monadInv H. exploit IHl; eauto.
    unfold composite_of_def in EQ. destruct (env!id0) eqn:E; try discriminate.
    destruct (complete_members env m) eqn:C; simplify_eq EQ. clear EQ; intros EQ.
    rewrite PTree.gsspec. intros [A|A]; auto.
    destruct (peq id id0); auto.
    inv A. rewrite <- H0; auto.
  }
  intros. exploit REC; eauto. rewrite PTree.gempty. intuition congruence.
Qed.

As a corollay, in a consistent environment, the rank of a composite type is strictly greater than the ranks of its member types.

Remark rank_type_members:
  forall ce m ms, In m ms -> (rank_type ce (type_member m) <= rank_members ce ms)%nat.
Proof.
  induction ms; simpl; intros.
- tauto.
- destruct a; destruct H; subst; simpl.
  + lia.
  + apply IHms in H. lia.
  + lia.
  + apply IHms; auto.
Qed.

Lemma rank_struct_member:
  forall ce id a co m,
  composite_env_consistent ce ->
  ce!id = Some co ->
  In m (co_members co) ->
  (rank_type ce (type_member m) < rank_type ce (Tstruct id a))%nat.
Proof.
  intros; simpl. rewrite H0.
  erewrite co_consistent_rank by eauto.
  exploit (rank_type_members ce); eauto.
  lia.
Qed.

Lemma rank_union_member:
  forall ce id a co m,
  composite_env_consistent ce ->
  ce!id = Some co ->
  In m (co_members co) ->
  (rank_type ce (type_member m) < rank_type ce (Tunion id a))%nat.
Proof.
  intros; simpl. rewrite H0.
  erewrite co_consistent_rank by eauto.
  exploit (rank_type_members ce); eauto.
  lia.
Qed.

Programs and compilation units


The definitions in this section are parameterized over a type F of internal function definitions, so that they apply both to CompCert C and to Clight.

Set Implicit Arguments.

Section PROGRAMS.

Variable F: Type.

Functions can either be defined (Internal) or declared as external functions (External).

Inductive fundef : Type :=
  | Internal: F -> fundef
  | External: external_function -> typelist -> type -> calling_convention -> fundef.

A program, or compilation unit, is composed of:

Record program : Type := {
  prog_defs: list (ident * globdef fundef type);
  prog_public: list ident;
  prog_main: ident;
  prog_types: list composite_definition;
  prog_comp_env: composite_env;
  prog_comp_env_eq: build_composite_env prog_types = OK prog_comp_env
}.

Definition program_of_program (p: program) : AST.program fundef type :=
  {| AST.prog_defs := p.(prog_defs);
     AST.prog_public := p.(prog_public);
     AST.prog_main := p.(prog_main) |}.

Coercion program_of_program: program >-> AST.program.

Program Definition make_program (types: list composite_definition)
                                (defs: list (ident * globdef fundef type))
                                (public: list ident)
                                (main: ident) : res program :=
  match build_composite_env types with
  | Error e => Error e
  | OK ce =>
      OK {| prog_defs := defs;
            prog_public := public;
            prog_main := main;
            prog_types := types;
            prog_comp_env := ce;
            prog_comp_env_eq := _ |}
  end.

End PROGRAMS.

Arguments External {F} _ _ _ _.

Unset Implicit Arguments.

Separate compilation and linking


Linking types


Global Program Instance Linker_types : Linker type := {
  link := fun t1 t2 => if type_eq t1 t2 then Some t1 else None;
  linkorder := fun t1 t2 => t1 = t2
}.
Next Obligation.
  destruct (type_eq x y); inv H. auto.
Defined.

Global Opaque Linker_types.

Linking composite definitions


Definition check_compat_composite (l: list composite_definition) (cd: composite_definition) : bool :=
  List.forallb
    (fun cd' =>
      if ident_eq (name_composite_def cd') (name_composite_def cd) then composite_def_eq cd cd' else true)
    l.

Definition filter_redefs (l1 l2: list composite_definition) :=
  let names1 := map name_composite_def l1 in
  List.filter (fun cd => negb (In_dec ident_eq (name_composite_def cd) names1)) l2.

Definition link_composite_defs (l1 l2: list composite_definition): option (list composite_definition) :=
  if List.forallb (check_compat_composite l2) l1
  then Some (l1 ++ filter_redefs l1 l2)
  else None.

Lemma link_composite_def_inv:
  forall l1 l2 l,
  link_composite_defs l1 l2 = Some l ->
     (forall cd1 cd2, In cd1 l1 -> In cd2 l2 -> name_composite_def cd2 = name_composite_def cd1 -> cd2 = cd1)
  /\ l = l1 ++ filter_redefs l1 l2
  /\ (forall x, In x l <-> In x l1 \/ In x l2).
Proof.
  unfold link_composite_defs; intros.
  destruct (forallb (check_compat_composite l2) l1) eqn:C; inv H.
  assert (A:
    forall cd1 cd2, In cd1 l1 -> In cd2 l2 -> name_composite_def cd2 = name_composite_def cd1 -> cd2 = cd1).
  { rewrite forallb_forall in C. intros.
    apply C in H. unfold check_compat_composite in H. rewrite forallb_forall in H.
    apply H in H0. rewrite H1, dec_eq_true in H0. symmetry; eapply proj_sumbool_true; eauto. }
  split. auto. split. auto.
  unfold filter_redefs; intros.
  rewrite in_app_iff. rewrite filter_In. intuition auto.
  destruct (in_dec ident_eq (name_composite_def x) (map name_composite_def l1)); simpl; auto.
  exploit list_in_map_inv; eauto. intros (y & P & Q).
  assert (x = y) by eauto. subst y. auto.
Qed.

Global Program Instance Linker_composite_defs : Linker (list composite_definition) := {
  link := link_composite_defs;
  linkorder := @List.incl composite_definition
}.
Next Obligation.
  apply incl_refl.
Defined.
Next Obligation.
  red; intros; eauto.
Defined.
Next Obligation.
  apply link_composite_def_inv in H; destruct H as (A & B & C).
  split; red; intros; apply C; auto.
Defined.

Connections with build_composite_env.

Lemma add_composite_definitions_append:
  forall l1 l2 env env'',
  add_composite_definitions env (l1 ++ l2) = OK env'' <->
  exists env', add_composite_definitions env l1 = OK env' /\ add_composite_definitions env' l2 = OK env''.
Proof.
  induction l1; simpl; intros.
- split; intros. exists env; auto. destruct H as (env' & A & B). congruence.
- destruct a; simpl. destruct (composite_of_def env id su m a); simpl.
  apply IHl1.
  split; intros. discriminate. destruct H as (env' & A & B); discriminate.
Qed.

Lemma composite_eq:
  forall su1 m1 a1 sz1 al1 r1 pos1 al2p1 szal1
         su2 m2 a2 sz2 al2 r2 pos2 al2p2 szal2,
  su1 = su2 -> m1 = m2 -> a1 = a2 -> sz1 = sz2 -> al1 = al2 -> r1 = r2 ->
  Build_composite su1 m1 a1 sz1 al1 r1 pos1 al2p1 szal1 = Build_composite su2 m2 a2 sz2 al2 r2 pos2 al2p2 szal2.
Proof.
  intros. subst.
  assert (pos1 = pos2) by apply proof_irr.
  assert (al2p1 = al2p2) by apply proof_irr.
  assert (szal1 = szal2) by apply proof_irr.
  subst. reflexivity.
Qed.

Lemma composite_of_def_eq:
  forall env id co,
  composite_consistent env co ->
  env!id = None ->
  composite_of_def env id (co_su co) (co_members co) (co_attr co) = OK co.
Proof.
  intros. destruct H as [A B C D]. unfold composite_of_def. rewrite H0, A.
  destruct co; simpl in *. f_equal. apply composite_eq; auto. rewrite C, B; auto.
Qed.

Lemma composite_consistent_unique:
  forall env co1 co2,
  composite_consistent env co1 ->
  composite_consistent env co2 ->
  co_su co1 = co_su co2 ->
  co_members co1 = co_members co2 ->
  co_attr co1 = co_attr co2 ->
  co1 = co2.
Proof.
  intros. destruct H, H0. destruct co1, co2; simpl in *. apply composite_eq; congruence.
Qed.

Lemma composite_of_def_stable:
  forall (env env': composite_env)
         (EXTENDS: forall id co, env!id = Some co -> env'!id = Some co)
         id su m a co,
  env'!id = None ->
  composite_of_def env id su m a = OK co ->
  composite_of_def env' id su m a = OK co.
Proof.
  intros.
  unfold composite_of_def in H0.
  destruct (env!id) eqn:E; try discriminate.
  destruct (complete_members env m) eqn:CM; try discriminate.
  transitivity (composite_of_def env' id (co_su co) (co_members co) (co_attr co)).
  inv H0; auto.
  apply composite_of_def_eq; auto.
  apply composite_consistent_stable with env; auto.
  inv H0; constructor; auto.
Qed.

Lemma link_add_composite_definitions:
  forall l0 env0,
  build_composite_env l0 = OK env0 ->
  forall l env1 env1' env2,
  add_composite_definitions env1 l = OK env1' ->
  (forall id co, env1!id = Some co -> env2!id = Some co) ->
  (forall id co, env0!id = Some co -> env2!id = Some co) ->
  (forall id, env2!id = if In_dec ident_eq id (map name_composite_def l0) then env0!id else env1!id) ->
  ((forall cd1 cd2, In cd1 l0 -> In cd2 l -> name_composite_def cd2 = name_composite_def cd1 -> cd2 = cd1)) ->
  { env2' |
      add_composite_definitions env2 (filter_redefs l0 l) = OK env2'
  /\ (forall id co, env1'!id = Some co -> env2'!id = Some co)
  /\ (forall id co, env0!id = Some co -> env2'!id = Some co) }.
Proof.
  induction l; simpl; intros until env2; intros ACD AGREE1 AGREE0 AGREE2 UNIQUE.
- inv ACD. exists env2; auto.
- destruct a. destruct (composite_of_def env1 id su m a) as [x|e] eqn:EQ; try discriminate.
  simpl in ACD.
  generalize EQ. unfold composite_of_def at 1.
  destruct (env1!id) eqn:E1; try congruence.
  destruct (complete_members env1 m) eqn:CM1; try congruence.
  intros EQ1.
  simpl. destruct (in_dec ident_eq id (map name_composite_def l0)); simpl.
+ eapply IHl; eauto.
* intros. rewrite PTree.gsspec in H0. destruct (peq id0 id); auto.
  inv H0.
  exploit list_in_map_inv; eauto. intros ([id' su' m' a'] & P & Q).
  assert (X: Composite id su m a = Composite id' su' m' a').
  { eapply UNIQUE. auto. auto. rewrite <- P; auto. }
  inv X.
  exploit build_composite_env_charact; eauto. intros (co' & U & V & W & X).
  assert (co' = co).
  { apply composite_consistent_unique with env2.
    apply composite_consistent_stable with env0; auto.
    eapply build_composite_env_consistent; eauto.
    apply composite_consistent_stable with env1; auto.
    inversion EQ1; constructor; auto.
    inversion EQ1; auto.
    inversion EQ1; auto.
    inversion EQ1; auto. }
  subst co'. apply AGREE0; auto.
* intros. rewrite AGREE2. destruct (in_dec ident_eq id0 (map name_composite_def l0)); auto.
  rewrite PTree.gsspec. destruct (peq id0 id); auto. subst id0. contradiction.
+ assert (E2: env2!id = None).
  { rewrite AGREE2. rewrite pred_dec_false by auto. auto. }
  assert (E3: composite_of_def env2 id su m a = OK x).
  { eapply composite_of_def_stable. eexact AGREE1. eauto. eauto. }
  rewrite E3. simpl. eapply IHl; eauto.
* intros until co; rewrite ! PTree.gsspec. destruct (peq id0 id); auto.
* intros until co; rewrite ! PTree.gsspec. intros. destruct (peq id0 id); auto.
  subst id0. apply AGREE0 in H0. congruence.
* intros. rewrite ! PTree.gsspec. destruct (peq id0 id); auto. subst id0.
  rewrite pred_dec_false by auto. auto.
Qed.

Theorem link_build_composite_env:
  forall l1 l2 l env1 env2,
  build_composite_env l1 = OK env1 ->
  build_composite_env l2 = OK env2 ->
  link l1 l2 = Some l ->
  { env |
     build_composite_env l = OK env
  /\ (forall id co, env1!id = Some co -> env!id = Some co)
  /\ (forall id co, env2!id = Some co -> env!id = Some co) }.
Proof.
  intros. edestruct link_composite_def_inv as (A & B & C); eauto.
  edestruct link_add_composite_definitions as (env & P & Q & R).
  eexact H.
  eexact H0.
  instantiate (1 := env1). intros. rewrite PTree.gempty in H2; discriminate.
  auto.
  intros. destruct (in_dec ident_eq id (map name_composite_def l1)); auto.
  rewrite PTree.gempty. destruct (env1!id) eqn:E1; auto.
  exploit build_composite_env_domain. eexact H. eauto.
  intros. apply (in_map name_composite_def) in H2. elim n; auto.
  auto.
  exists env; split; auto. subst l. apply add_composite_definitions_append. exists env1; auto.
Qed.

Linking function definitions


Definition link_fundef {F: Type} (fd1 fd2: fundef F) :=
  match fd1, fd2 with
  | Internal _, Internal _ => None
  | External ef1 targs1 tres1 cc1, External ef2 targs2 tres2 cc2 =>
      if external_function_eq ef1 ef2
      && typelist_eq targs1 targs2
      && type_eq tres1 tres2
      && calling_convention_eq cc1 cc2
      then Some (External ef1 targs1 tres1 cc1)
      else None
  | Internal f, External ef targs tres cc =>
      match ef with EF_external id sg => Some (Internal f) | _ => None end
  | External ef targs tres cc, Internal f =>
      match ef with EF_external id sg => Some (Internal f) | _ => None end
  end.

Inductive linkorder_fundef {F: Type}: fundef F -> fundef F -> Prop :=
  | linkorder_fundef_refl: forall fd,
      linkorder_fundef fd fd
  | linkorder_fundef_ext_int: forall f id sg targs tres cc,
      linkorder_fundef (External (EF_external id sg) targs tres cc) (Internal f).

Global Program Instance Linker_fundef (F: Type): Linker (fundef F) := {
  link := link_fundef;
  linkorder := linkorder_fundef
}.
Next Obligation.
  constructor.
Defined.
Next Obligation.
  inv H; inv H0; constructor.
Defined.
Next Obligation.
  destruct x, y; simpl in H.
+ discriminate.
+ destruct e; inv H. split; constructor.
+ destruct e; inv H. split; constructor.
+ destruct (external_function_eq e e0 && typelist_eq t t1 && type_eq t0 t2 && calling_convention_eq c c0) eqn:A; inv H.
  InvBooleans. subst. split; constructor.
Defined.

Remark link_fundef_either:
  forall (F: Type) (f1 f2 f: fundef F), link f1 f2 = Some f -> f = f1 \/ f = f2.
Proof.
  simpl; intros. unfold link_fundef in H. destruct f1, f2; try discriminate.
- destruct e; inv H. auto.
- destruct e; inv H. auto.
- destruct (external_function_eq e e0 && typelist_eq t t1 && type_eq t0 t2 && calling_convention_eq c c0); inv H; auto.
Qed.

Global Opaque Linker_fundef.

Linking programs


Definition lift_option {A: Type} (opt: option A) : { x | opt = Some x } + { opt = None }.
Proof.
  destruct opt. left; exists a; auto. right; auto.
Defined.

Definition link_program {F:Type} (p1 p2: program F): option (program F) :=
  match link (program_of_program p1) (program_of_program p2) with
  | None => None
  | Some p =>
      match lift_option (link p1.(prog_types) p2.(prog_types)) with
      | inright _ => None
      | inleft (exist typs EQ) =>
          match link_build_composite_env
                   p1.(prog_types) p2.(prog_types) typs
                   p1.(prog_comp_env) p2.(prog_comp_env)
                   p1.(prog_comp_env_eq) p2.(prog_comp_env_eq) EQ with
          | exist env (conj P Q) =>
              Some {| prog_defs := p.(AST.prog_defs);
                      prog_public := p.(AST.prog_public);
                      prog_main := p.(AST.prog_main);
                      prog_types := typs;
                      prog_comp_env := env;
                      prog_comp_env_eq := P |}
          end
      end
  end.

Definition linkorder_program {F: Type} (p1 p2: program F) : Prop :=
     linkorder (program_of_program p1) (program_of_program p2)
  /\ (forall id co, p1.(prog_comp_env)!id = Some co -> p2.(prog_comp_env)!id = Some co).

Global Program Instance Linker_program (F: Type): Linker (program F) := {
  link := link_program;
  linkorder := linkorder_program
}.
Next Obligation.
  split. apply linkorder_refl. auto.
Defined.
Next Obligation.
  destruct H, H0. split. eapply linkorder_trans; eauto.
  intros; auto.
Defined.
Next Obligation.
  revert H. unfold link_program.
  destruct (link (program_of_program x) (program_of_program y)) as [p|] eqn:LP; try discriminate.
  destruct (lift_option (link (prog_types x) (prog_types y))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types x) (prog_types y) typs
       (prog_comp_env x) (prog_comp_env y) (prog_comp_env_eq x)
       (prog_comp_env_eq y) EQ) as (env & P & Q & R).
  destruct (link_linkorder _ _ _ LP).
  intros X; inv X.
  split; split; auto.
Defined.

Global Opaque Linker_program.

Commutation between linking and program transformations


Section LINK_MATCH_PROGRAM_GEN.

Context {F G: Type}.
Variable match_fundef: program F -> fundef F -> fundef G -> Prop.

Hypothesis link_match_fundef:
  forall ctx1 ctx2 f1 tf1 f2 tf2 f,
  link f1 f2 = Some f ->
  match_fundef ctx1 f1 tf1 -> match_fundef ctx2 f2 tf2 ->
  exists tf, link tf1 tf2 = Some tf /\ (match_fundef ctx1 f tf \/ match_fundef ctx2 f tf).

Let match_program (p: program F) (tp: program G) : Prop :=
    Linking.match_program_gen match_fundef eq p p tp
 /\ prog_types tp = prog_types p.

Theorem link_match_program_gen:
  forall p1 p2 tp1 tp2 p,
  link p1 p2 = Some p -> match_program p1 tp1 -> match_program p2 tp2 ->
  exists tp, link tp1 tp2 = Some tp /\ match_program p tp.
Proof.
  intros until p; intros L [M1 T1] [M2 T2].
  destruct (link_linkorder _ _ _ L) as [LO1 LO2].
Local Transparent Linker_program.
  simpl in L; unfold link_program in L.
  destruct (link (program_of_program p1) (program_of_program p2)) as [pp|] eqn:LP; try discriminate.
  assert (A: exists tpp,
               link (program_of_program tp1) (program_of_program tp2) = Some tpp
             /\ Linking.match_program_gen match_fundef eq p pp tpp).
  { eapply Linking.link_match_program; eauto.
  - intros.
    Local Transparent Linker_types.
    simpl in *. destruct (type_eq v1 v2); inv H. exists v; rewrite dec_eq_true; auto.
  }
  destruct A as (tpp & TLP & MP).
  simpl; unfold link_program. rewrite TLP.
  destruct (lift_option (link (prog_types p1) (prog_types p2))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types p1) (prog_types p2) typs
           (prog_comp_env p1) (prog_comp_env p2) (prog_comp_env_eq p1)
           (prog_comp_env_eq p2) EQ) as (env & P & Q).
  rewrite <- T1, <- T2 in EQ.
  destruct (lift_option (link (prog_types tp1) (prog_types tp2))) as [[ttyps EQ']|EQ']; try congruence.
  assert (ttyps = typs) by congruence. subst ttyps.
  destruct (link_build_composite_env (prog_types tp1) (prog_types tp2) typs
         (prog_comp_env tp1) (prog_comp_env tp2) (prog_comp_env_eq tp1)
         (prog_comp_env_eq tp2) EQ') as (tenv & R & S).
  assert (tenv = env) by congruence. subst tenv.
  econstructor; split; eauto. inv L. split; auto.
Qed.

End LINK_MATCH_PROGRAM_GEN.

Section LINK_MATCH_PROGRAM.

Context {F G: Type}.
Variable match_fundef: fundef F -> fundef G -> Prop.

Hypothesis link_match_fundef:
  forall f1 tf1 f2 tf2 f,
  link f1 f2 = Some f ->
  match_fundef f1 tf1 -> match_fundef f2 tf2 ->
  exists tf, link tf1 tf2 = Some tf /\ match_fundef f tf.

Let match_program (p: program F) (tp: program G) : Prop :=
    Linking.match_program (fun ctx f tf => match_fundef f tf) eq p tp
 /\ prog_types tp = prog_types p.

Theorem link_match_program:
  forall p1 p2 tp1 tp2 p,
  link p1 p2 = Some p -> match_program p1 tp1 -> match_program p2 tp2 ->
  exists tp, link tp1 tp2 = Some tp /\ match_program p tp.
Proof.
  intros. destruct H0, H1.
Local Transparent Linker_program.
  simpl in H; unfold link_program in H.
  destruct (link (program_of_program p1) (program_of_program p2)) as [pp|] eqn:LP; try discriminate.
  assert (A: exists tpp,
               link (program_of_program tp1) (program_of_program tp2) = Some tpp
             /\ Linking.match_program (fun ctx f tf => match_fundef f tf) eq pp tpp).
  { eapply Linking.link_match_program.
  - intros. exploit link_match_fundef; eauto. intros (tf & A & B). exists tf; auto.
  - intros.
    Local Transparent Linker_types.
    simpl in *. destruct (type_eq v1 v2); inv H4. exists v; rewrite dec_eq_true; auto.
  - eauto.
  - eauto.
  - eauto.
  - apply (link_linkorder _ _ _ LP).
  - apply (link_linkorder _ _ _ LP). }
  destruct A as (tpp & TLP & MP).
  simpl; unfold link_program. rewrite TLP.
  destruct (lift_option (link (prog_types p1) (prog_types p2))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types p1) (prog_types p2) typs
           (prog_comp_env p1) (prog_comp_env p2) (prog_comp_env_eq p1)
           (prog_comp_env_eq p2) EQ) as (env & P & Q).
  rewrite <- H2, <- H3 in EQ.
  destruct (lift_option (link (prog_types tp1) (prog_types tp2))) as [[ttyps EQ']|EQ']; try congruence.
  assert (ttyps = typs) by congruence. subst ttyps.
  destruct (link_build_composite_env (prog_types tp1) (prog_types tp2) typs
         (prog_comp_env tp1) (prog_comp_env tp2) (prog_comp_env_eq tp1)
         (prog_comp_env_eq tp2) EQ') as (tenv & R & S).
  assert (tenv = env) by congruence. subst tenv.
  econstructor; split; eauto. inv H. split; auto.
  unfold program_of_program; simpl. destruct pp, tpp; exact MP.
Qed.

End LINK_MATCH_PROGRAM.