Associating semantics to built-in functions
Require Import String Coqlib.
Require Import AST Integers Floats Values Memdata.
Local Open Scope asttyp_scope.
This module provides definitions and mechanisms to associate semantics
with names of built-in functions.
This module is independent of the target architecture. Each target
provides a Builtins1 module that lists the built-ins semantics
appropriate for the target.
Definition val_opt_has_rettype (
ov:
option val) (
t:
xtype) :
Prop :=
match ov with Some v =>
Val.has_rettype v t |
None =>
True end.
Definition val_opt_inject (
j:
meminj) (
ov ov':
option val) :
Prop :=
match ov,
ov' with
|
None, _ =>
True
|
Some v,
Some v' =>
Val.inject j v v'
| _,
None =>
False
end.
The semantics of a built-in function is a partial function
from list of values to values.
It must agree with the return type stated in the signature,
and be compatible with value injections.
Record builtin_sem (
tret:
xtype) :
Type :=
mkbuiltin {
bs_sem :>
list val ->
option val;
bs_well_typed:
forall vl,
val_opt_has_rettype (
bs_sem vl)
tret;
bs_inject:
forall j vl vl',
Val.inject_list j vl vl' ->
val_opt_inject j (
bs_sem vl) (
bs_sem vl')
}.
Builtin functions can be created from functions over values, such as those
from the
Values.Val module. Proofs of well-typedness and compatibility with
injections must be provided. The constructor functions have names
-
mkbuiltin_vNt for a total function of N arguments that are values, or
-
mkbuiltin_vNp for a partial function of N arguments that are values.
Local Unset Program Cases.
Program Definition mkbuiltin_v1t
(
tret:
xtype) (
f:
val ->
val)
(
WT:
forall v1,
Val.has_rettype (
f v1)
tret)
(
INJ:
forall j v1 v1',
Val.inject j v1 v1' ->
Val.inject j (
f v1) (
f v1')) :=
mkbuiltin tret (
fun vl =>
match vl with v1 ::
nil =>
Some (
f v1) | _ =>
None end) _ _.
Next Obligation.
red; destruct vl; auto. destruct vl; auto.
Qed.
Next Obligation.
red; inv H; auto. inv H1; auto.
Qed.
Program Definition mkbuiltin_v2t
(
tret:
xtype) (
f:
val ->
val ->
val)
(
WT:
forall v1 v2,
Val.has_rettype (
f v1 v2)
tret)
(
INJ:
forall j v1 v1' v2 v2',
Val.inject j v1 v1' ->
Val.inject j v2 v2' ->
Val.inject j (
f v1 v2) (
f v1' v2')) :=
mkbuiltin tret (
fun vl =>
match vl with v1 ::
v2 ::
nil =>
Some (
f v1 v2) | _ =>
None end) _ _.
Next Obligation.
red; destruct vl; auto. destruct vl; auto. destruct vl; auto.
Qed.
Next Obligation.
red; inv H; auto. inv H1; auto. inv H2; auto.
Qed.
Program Definition mkbuiltin_v3t
(
tret:
xtype) (
f:
val ->
val ->
val ->
val)
(
WT:
forall v1 v2 v3,
Val.has_rettype (
f v1 v2 v3)
tret)
(
INJ:
forall j v1 v1' v2 v2' v3 v3',
Val.inject j v1 v1' ->
Val.inject j v2 v2' ->
Val.inject j v3 v3' ->
Val.inject j (
f v1 v2 v3) (
f v1' v2' v3')) :=
mkbuiltin tret (
fun vl =>
match vl with v1 ::
v2 ::
v3 ::
nil =>
Some (
f v1 v2 v3) | _ =>
None end) _ _.
Next Obligation.
red; destruct vl; auto. destruct vl; auto. destruct vl; auto. destruct vl; auto.
Qed.
Next Obligation.
red; inv H; auto. inv H1; auto. inv H2; auto. inv H3; auto.
Qed.
Program Definition mkbuiltin_v1p
(
tret:
xtype) (
f:
val ->
option val)
(
WT:
forall v1,
val_opt_has_rettype (
f v1)
tret)
(
INJ:
forall j v1 v1',
Val.inject j v1 v1' ->
val_opt_inject j (
f v1) (
f v1')) :=
mkbuiltin tret (
fun vl =>
match vl with v1 ::
nil =>
f v1 | _ =>
None end) _ _.
Next Obligation.
red; destruct vl; auto. destruct vl; auto. apply WT.
Qed.
Next Obligation.
red; inv H; auto. inv H1; auto. apply INJ; auto.
Qed.
Program Definition mkbuiltin_v2p
(
tret:
xtype) (
f:
val ->
val ->
option val)
(
WT:
forall v1 v2,
val_opt_has_rettype (
f v1 v2)
tret)
(
INJ:
forall j v1 v1' v2 v2',
Val.inject j v1 v1' ->
Val.inject j v2 v2' ->
val_opt_inject j (
f v1 v2) (
f v1' v2')) :=
mkbuiltin tret (
fun vl =>
match vl with v1 ::
v2 ::
nil =>
f v1 v2 | _ =>
None end) _ _.
Next Obligation.
red; destruct vl; auto. destruct vl; auto. destruct vl; auto. apply WT.
Qed.
Next Obligation.
red; inv H; auto. inv H1; auto. inv H2; auto. apply INJ; auto.
Qed.
For numerical functions, involving only integers and floating-point numbers
but no pointer values, we can automate the proofs of well-typedness and
of compatibility with injections.
First we define a mapping from syntactic types (Tint, Tfloat, etc) to semantic Coq types.
Definition valty (
t:
typ) :
Type :=
match t with
|
Tint =>
int
|
Tlong =>
int64
|
Tfloat =>
float
|
Tsingle =>
float32
|
Tany32 |
Tany64 =>
Empty_set (* no clear semantic meaning *)
end.
Definition valxty (
t:
xtype) :
Type :=
match t with
|
Xbool => {
n:
int |
n =
Int.zero \/
n =
Int.one }
|
Xint8signed => {
n:
int |
n =
Int.sign_ext 8
n }
|
Xint8unsigned => {
n:
int |
n =
Int.zero_ext 8
n }
|
Xint16signed => {
n:
int |
n =
Int.sign_ext 16
n }
|
Xint16unsigned => {
n:
int |
n =
Int.zero_ext 16
n }
|
Xint =>
int
|
Xlong =>
int64
|
Xfloat =>
float
|
Xsingle =>
float32
|
Xptr =>
Empty_set (* not a number *)
|
Xany32 |
Xany64 =>
Empty_set (* not a number *)
|
Xvoid =>
unit
end.
We can inject from the numerical type valxty t to the value type val.
Definition inj_num (
t:
xtype) :
valxty t ->
val :=
match t with
|
Xbool |
Xint8signed |
Xint8unsigned |
Xint16signed |
Xint16unsigned =>
fun n =>
Vint (
proj1_sig n)
|
Xint =>
Vint
|
Xlong =>
Vlong
|
Xfloat =>
Vfloat
|
Xsingle =>
Vsingle
| _ =>
fun _ =>
Vundef
end.
Conversely, we can project a value to the numerical type valty t.
Definition proj_num {
A:
Type} (
t:
typ) (
k0:
A) (
v:
val): (
valty t ->
A) ->
A :=
match t with
|
Tint =>
fun k1 =>
match v with Vint n =>
k1 n | _ =>
k0 end
|
Tlong =>
fun k1 =>
match v with Vlong n =>
k1 n | _ =>
k0 end
|
Tfloat =>
fun k1 =>
match v with Vfloat n =>
k1 n | _ =>
k0 end
|
Tsingle =>
fun k1 =>
match v with Vsingle n =>
k1 n | _ =>
k0 end
|
Tany32 |
Tany64 =>
fun k1 =>
k0
end.
Lemma inj_num_wt:
forall t x,
Val.has_rettype (
inj_num t x)
t.
Proof.
destruct t;
intros;
simpl;
auto;
apply proj2_sig.
Qed.
Lemma inj_num_inject:
forall j t x,
Val.inject j (
inj_num t x) (
inj_num t x).
Proof.
destruct t; intros; constructor.
Qed.
Lemma inj_num_opt_wt:
forall t x,
val_opt_has_rettype (
option_map (
inj_num t)
x)
t.
Proof.
intros.
destruct x;
simpl.
apply inj_num_wt.
auto.
Qed.
Lemma inj_num_opt_inject:
forall j t x,
val_opt_inject j (
option_map (
inj_num t)
x) (
option_map (
inj_num t)
x).
Proof.
Lemma proj_num_wt:
forall tres t k1 v,
(
forall x,
Val.has_rettype (
k1 x)
tres) ->
Val.has_rettype (
proj_num t Vundef v k1)
tres.
Proof.
intros.
assert (
U:
Val.has_rettype Vundef tres).
{
destruct tres;
exact I. }
intros.
destruct t;
simpl;
destruct v;
auto.
Qed.
Lemma proj_num_inject:
forall j t k1 v k1' v',
(
forall x,
Val.inject j (
k1 x) (
k1' x)) ->
Val.inject j v v' ->
Val.inject j (
proj_num t Vundef v k1) (
proj_num t Vundef v' k1').
Proof.
intros. destruct t; simpl; inv H0; auto.
Qed.
Lemma proj_num_opt_wt:
forall tres t k0 k1 v,
k0 =
None \/
k0 =
Some Vundef ->
(
forall x,
val_opt_has_rettype (
k1 x)
tres) ->
val_opt_has_rettype (
proj_num t k0 v k1)
tres.
Proof.
intros.
assert (
val_opt_has_rettype k0 tres).
{
destruct H;
subst k0.
exact I.
hnf.
destruct tres;
exact I. }
destruct t;
simpl;
destruct v;
auto.
Qed.
Lemma proj_num_opt_inject:
forall j k0 t k1 v k1' v',
(
forall ov,
val_opt_inject j k0 ov) ->
(
forall x,
val_opt_inject j (
k1 x) (
k1' x)) ->
Val.inject j v v' ->
val_opt_inject j (
proj_num t k0 v k1) (
proj_num t k0 v' k1').
Proof.
intros. destruct t; simpl; inv H1; auto.
Qed.
Wrapping numerical functions as built-ins. The constructor functions
have names
-
mkbuiltin_nNt for a total function of N numbers, or
-
mkbuiltin_vNp for a partial function of N numbers.
Program Definition mkbuiltin_n1t
(
targ1:
typ) (
tres:
xtype)
(
f:
valty targ1 ->
valxty tres) :=
mkbuiltin_v1t tres
(
fun v1 =>
proj_num targ1 Vundef v1 (
fun x =>
inj_num tres (
f x)))
_ _.
Next Obligation.
Next Obligation.
Program Definition mkbuiltin_n2t
(
targ1 targ2:
typ) (
tres:
xtype)
(
f:
valty targ1 ->
valty targ2 ->
valxty tres) :=
mkbuiltin_v2t tres
(
fun v1 v2 =>
proj_num targ1 Vundef v1 (
fun x1 =>
proj_num targ2 Vundef v2 (
fun x2 =>
inj_num tres (
f x1 x2))))
_ _.
Next Obligation.
Next Obligation.
Program Definition mkbuiltin_n3t
(
targ1 targ2 targ3:
typ) (
tres:
xtype)
(
f:
valty targ1 ->
valty targ2 ->
valty targ3 ->
valxty tres) :=
mkbuiltin_v3t tres
(
fun v1 v2 v3 =>
proj_num targ1 Vundef v1 (
fun x1 =>
proj_num targ2 Vundef v2 (
fun x2 =>
proj_num targ3 Vundef v3 (
fun x3 =>
inj_num tres (
f x1 x2 x3)))))
_ _.
Next Obligation.
Next Obligation.
Program Definition mkbuiltin_n1p
(
targ1:
typ) (
tres:
xtype)
(
f:
valty targ1 ->
option (
valxty tres)) :=
mkbuiltin_v1p tres
(
fun v1 =>
proj_num targ1 None v1 (
fun x =>
option_map (
inj_num tres) (
f x)))
_ _.
Next Obligation.
Next Obligation.
Program Definition mkbuiltin_n2p
(
targ1 targ2:
typ) (
tres:
xtype)
(
f:
valty targ1 ->
valty targ2 ->
option (
valxty tres)) :=
mkbuiltin_v2p tres
(
fun v1 v2 =>
proj_num targ1 None v1 (
fun x1 =>
proj_num targ2 None v2 (
fun x2 =>
option_map (
inj_num tres) (
f x1 x2))))
_ _.
Next Obligation.
Next Obligation.
Looking up builtins by name and signature
Section LOOKUP.
Context {
A:
Type} (
sig_of:
A ->
signature).
Fixpoint lookup_builtin (
name:
string) (
sg:
signature) (
l:
list (
string *
A)) :
option A :=
match l with
|
nil =>
None
| (
n,
b) ::
l =>
if string_dec name n &&
signature_eq sg (
sig_of b)
then Some b
else lookup_builtin name sg l
end.
Lemma lookup_builtin_sig:
forall name sg b l,
lookup_builtin name sg l =
Some b ->
sig_of b =
sg.
Proof.
induction l as [ | [
n b']
l ];
simpl;
intros.
-
discriminate.
-
destruct (
string_dec name n &&
signature_eq sg (
sig_of b'))
eqn:
E.
+
InvBooleans.
congruence.
+
auto.
Qed.
End LOOKUP.
The standard, platform-independent built-ins
Inductive standard_builtin :
Type :=
|
BI_select (
t:
typ)
|
BI_fabs
|
BI_fabsf
|
BI_fsqrt
|
BI_negl
|
BI_addl
|
BI_subl
|
BI_mull
|
BI_i16_bswap
|
BI_i32_bswap
|
BI_i64_bswap
|
BI_unreachable
|
BI_i64_umulh
|
BI_i64_smulh
|
BI_i64_sdiv
|
BI_i64_udiv
|
BI_i64_smod
|
BI_i64_umod
|
BI_i64_shl
|
BI_i64_shr
|
BI_i64_sar
|
BI_i64_dtos
|
BI_i64_dtou
|
BI_i64_stod
|
BI_i64_utod
|
BI_i64_stof
|
BI_i64_utof.
Local Open Scope string_scope.
Definition standard_builtin_table :
list (
string *
standard_builtin) :=
(
"__builtin_sel",
BI_select Tint)
:: (
"__builtin_sel",
BI_select Tlong)
:: (
"__builtin_sel",
BI_select Tfloat)
:: (
"__builtin_sel",
BI_select Tsingle)
:: (
"__builtin_fabs",
BI_fabs)
:: (
"__builtin_fabsf",
BI_fabsf)
:: (
"__builtin_fsqrt",
BI_fsqrt)
:: (
"__builtin_sqrt",
BI_fsqrt)
:: (
"__builtin_negl",
BI_negl)
:: (
"__builtin_addl",
BI_addl)
:: (
"__builtin_subl",
BI_subl)
:: (
"__builtin_mull",
BI_mull)
:: (
"__builtin_bswap16",
BI_i16_bswap)
:: (
"__builtin_bswap",
BI_i32_bswap)
:: (
"__builtin_bswap32",
BI_i32_bswap)
:: (
"__builtin_bswap64",
BI_i64_bswap)
:: (
"__builtin_unreachable",
BI_unreachable)
:: (
"__compcert_i64_umulh",
BI_i64_umulh)
:: (
"__compcert_i64_smulh",
BI_i64_smulh)
:: (
"__compcert_i64_sdiv",
BI_i64_sdiv)
:: (
"__compcert_i64_udiv",
BI_i64_udiv)
:: (
"__compcert_i64_smod",
BI_i64_smod)
:: (
"__compcert_i64_umod",
BI_i64_umod)
:: (
"__compcert_i64_shl",
BI_i64_shl)
:: (
"__compcert_i64_shr",
BI_i64_shr)
:: (
"__compcert_i64_sar",
BI_i64_sar)
:: (
"__compcert_i64_dtos",
BI_i64_dtos)
:: (
"__compcert_i64_dtou",
BI_i64_dtou)
:: (
"__compcert_i64_stod",
BI_i64_stod)
:: (
"__compcert_i64_utod",
BI_i64_utod)
:: (
"__compcert_i64_stof",
BI_i64_stof)
:: (
"__compcert_i64_utof",
BI_i64_utof)
::
nil.
Definition standard_builtin_sig (
b:
standard_builtin) :
signature :=
match b with
|
BI_select t =>
let t :=
inj_type t in [
Xint;
t;
t --->
t]
|
BI_fabs |
BI_fsqrt =>
[
Xfloat --->
Xfloat]
|
BI_fabsf =>
[
Xsingle --->
Xsingle]
|
BI_negl =>
[
Xlong --->
Xlong]
|
BI_addl |
BI_subl |
BI_i64_umulh|
BI_i64_smulh
|
BI_i64_sdiv |
BI_i64_udiv |
BI_i64_smod |
BI_i64_umod =>
[
Xlong;
Xlong --->
Xlong]
|
BI_mull =>
[
Xint;
Xint --->
Xlong]
|
BI_i32_bswap =>
[
Xint --->
Xint]
|
BI_i64_bswap =>
[
Xlong --->
Xlong]
|
BI_i16_bswap =>
[
Xint --->
Xint]
|
BI_unreachable =>
mksignature nil Xvoid cc_default
|
BI_i64_shl |
BI_i64_shr |
BI_i64_sar =>
[
Xlong;
Xint --->
Xlong]
|
BI_i64_dtos |
BI_i64_dtou =>
[
Xfloat --->
Xlong]
|
BI_i64_stod |
BI_i64_utod =>
[
Xlong --->
Xfloat]
|
BI_i64_stof |
BI_i64_utof =>
[
Xlong --->
Xsingle]
end.
Program Definition standard_builtin_sem (
b:
standard_builtin) :
builtin_sem (
sig_res (
standard_builtin_sig b)) :=
match b with
|
BI_select t =>
mkbuiltin (
inj_type t)
(
fun vargs =>
match vargs with
|
Vint n ::
v1 ::
v2 ::
nil =>
Some (
Val.normalize (
if Int.eq n Int.zero then v2 else v1)
t)
| _ =>
None
end) _ _
|
BI_fabs =>
mkbuiltin_n1t Tfloat Xfloat Float.abs
|
BI_fabsf =>
mkbuiltin_n1t Tsingle Xsingle Float32.abs
|
BI_fsqrt =>
mkbuiltin_n1t Tfloat Xfloat Float.sqrt
|
BI_negl =>
mkbuiltin_n1t Tlong Xlong Int64.neg
|
BI_addl =>
mkbuiltin_v2t Xlong Val.addl _ _
|
BI_subl =>
mkbuiltin_v2t Xlong Val.subl _ _
|
BI_mull =>
mkbuiltin_v2t Xlong Val.mull' _ _
|
BI_i16_bswap =>
mkbuiltin_n1t Tint Xint
(
fun n =>
Int.repr (
decode_int (
List.rev (
encode_int 2%
nat (
Int.unsigned n)))))
|
BI_i32_bswap =>
mkbuiltin_n1t Tint Xint
(
fun n =>
Int.repr (
decode_int (
List.rev (
encode_int 4%
nat (
Int.unsigned n)))))
|
BI_i64_bswap =>
mkbuiltin_n1t Tlong Xlong
(
fun n =>
Int64.repr (
decode_int (
List.rev (
encode_int 8%
nat (
Int64.unsigned n)))))
|
BI_unreachable =>
mkbuiltin Xvoid (
fun vargs =>
None) _ _
|
BI_i64_umulh =>
mkbuiltin_n2t Tlong Tlong Xlong Int64.mulhu
|
BI_i64_smulh =>
mkbuiltin_n2t Tlong Tlong Xlong Int64.mulhs
|
BI_i64_sdiv =>
mkbuiltin_v2p Xlong Val.divls _ _
|
BI_i64_udiv =>
mkbuiltin_v2p Xlong Val.divlu _ _
|
BI_i64_smod =>
mkbuiltin_v2p Xlong Val.modls _ _
|
BI_i64_umod =>
mkbuiltin_v2p Xlong Val.modlu _ _
|
BI_i64_shl =>
mkbuiltin_v2t Xlong Val.shll _ _
|
BI_i64_shr =>
mkbuiltin_v2t Xlong Val.shrlu _ _
|
BI_i64_sar =>
mkbuiltin_v2t Xlong Val.shrl _ _
|
BI_i64_dtos =>
mkbuiltin_n1p Tfloat Xlong Float.to_long
|
BI_i64_dtou =>
mkbuiltin_n1p Tfloat Xlong Float.to_longu
|
BI_i64_stod =>
mkbuiltin_n1t Tlong Xfloat Float.of_long
|
BI_i64_utod =>
mkbuiltin_n1t Tlong Xfloat Float.of_longu
|
BI_i64_stof =>
mkbuiltin_n1t Tlong Xsingle Float32.of_long
|
BI_i64_utof =>
mkbuiltin_n1t Tlong Xsingle Float32.of_longu
end.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
unfold Val.mull',
Val.has_type;
destruct v1;
simpl;
auto;
destruct v2;
auto.
Qed.
Next Obligation.
inv H; simpl; auto. inv H0; auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct orb;
exact I.
Qed.
Next Obligation.
red.
inv H;
simpl;
auto.
inv H0;
auto.
destruct orb;
auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct Int64.eq;
exact I.
Qed.
Next Obligation.
red.
inv H;
simpl;
auto.
inv H0;
auto.
destruct Int64.eq;
auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct orb;
exact I.
Qed.
Next Obligation.
red.
inv H;
simpl;
auto.
inv H0;
auto.
destruct orb;
auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct Int64.eq;
exact I.
Qed.
Next Obligation.
red.
inv H;
simpl;
auto.
inv H0;
auto.
destruct Int64.eq;
auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct Int.ltu;
auto.
Qed.
Next Obligation.
inv H;
simpl;
auto.
inv H0;
auto.
destruct Int.ltu;
auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct Int.ltu;
auto.
Qed.
Next Obligation.
inv H;
simpl;
auto.
inv H0;
auto.
destruct Int.ltu;
auto.
Qed.
Next Obligation.
red.
destruct v1;
simpl;
auto.
destruct v2;
auto.
destruct Int.ltu;
auto.
Qed.
Next Obligation.
inv H;
simpl;
auto.
inv H0;
auto.
destruct Int.ltu;
auto.
Qed.