Translation from Mach to PPC.
Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Asm.
Local Open Scope string_scope.
Local Open Scope error_monad_scope.
The code generation functions take advantage of several
characteristics of the Mach code generated by earlier passes of the
compiler, mostly that argument and result registers are of the correct
types. These properties are true by construction, but it's easier to
recheck them during code generation and fail if they do not hold.
Extracting integer or float registers.
Definition ireg_of (
r:
mreg) :
res ireg :=
match preg_of r with IR mr =>
OK mr |
_ =>
Error(
msg "
Asmgen.ireg_of")
end.
Definition freg_of (
r:
mreg) :
res freg :=
match preg_of r with FR mr =>
OK mr |
_ =>
Error(
msg "
Asmgen.freg_of")
end.
Decomposition of integer constants. As noted in file
Asm,
immediate arguments to PowerPC instructions must fit into 16 bits,
and are interpreted after zero extension, sign extension, or
left shift by 16 bits, depending on the instruction. Integer
constants that do not fit must be synthesized using two
processor instructions. The following functions decompose
arbitrary 32-bit integers into two 16-bit halves (high and low
halves). They satisfy the following properties:
-
low_u n is an unsigned 16-bit integer;
-
low_s n is a signed 16-bit integer;
-
(high_u n) << 16 | low_u n equals n;
-
(high_s n) << 16 + low_s n equals n.
Definition low_u (
n:
int) :=
Int.and n (
Int.repr 65535).
Definition high_u (
n:
int) :=
Int.shru n (
Int.repr 16).
Definition low_s (
n:
int) :=
Int.sign_ext 16
n.
Definition high_s (
n:
int) :=
Int.shru (
Int.sub n (
low_s n)) (
Int.repr 16).
Smart constructors for arithmetic operations involving
a 32-bit integer constant. Depending on whether the
constant fits in 16 bits or not, one or several instructions
are generated as required to perform the operation
and prepended to the given instruction sequence k.
Definition loadimm (
r:
ireg) (
n:
int) (
k:
code) :=
if Int.eq (
high_s n)
Int.zero then
Paddi r GPR0 (
Cint n) ::
k
else if Int.eq (
low_s n)
Int.zero then
Paddis r GPR0 (
Cint (
high_s n)) ::
k
else
Paddis r GPR0 (
Cint (
high_u n)) ::
Pori r r (
Cint (
low_u n)) ::
k.
Definition addimm (
r1 r2:
ireg) (
n:
int) (
k:
code) :=
if Int.eq (
high_s n)
Int.zero then
Paddi r1 r2 (
Cint n) ::
k
else if Int.eq (
low_s n)
Int.zero then
Paddis r1 r2 (
Cint (
high_s n)) ::
k
else
Paddis r1 r2 (
Cint (
high_s n)) ::
Paddi r1 r1 (
Cint (
low_s n)) ::
k.
Definition andimm_base (
r1 r2:
ireg) (
n:
int) (
k:
code) :=
if Int.eq (
high_u n)
Int.zero then
Pandi_ r1 r2 (
Cint n) ::
k
else if Int.eq (
low_u n)
Int.zero then
Pandis_ r1 r2 (
Cint (
high_u n)) ::
k
else
loadimm GPR0 n (
Pand_ r1 r2 GPR0 ::
k).
Definition andimm (
r1 r2:
ireg) (
n:
int) (
k:
code) :=
if is_rlw_mask n then
Prlwinm r1 r2 Int.zero n ::
k
else
andimm_base r1 r2 n k.
Definition orimm (
r1 r2:
ireg) (
n:
int) (
k:
code) :=
if Int.eq (
high_u n)
Int.zero then
Pori r1 r2 (
Cint n) ::
k
else if Int.eq (
low_u n)
Int.zero then
Poris r1 r2 (
Cint (
high_u n)) ::
k
else
Poris r1 r2 (
Cint (
high_u n)) ::
Pori r1 r1 (
Cint (
low_u n)) ::
k.
Definition xorimm (
r1 r2:
ireg) (
n:
int) (
k:
code) :=
if Int.eq (
high_u n)
Int.zero then
Pxori r1 r2 (
Cint n) ::
k
else if Int.eq (
low_u n)
Int.zero then
Pxoris r1 r2 (
Cint (
high_u n)) ::
k
else
Pxoris r1 r2 (
Cint (
high_u n)) ::
Pxori r1 r1 (
Cint (
low_u n)) ::
k.
Definition rolm (
r1 r2:
ireg) (
amount mask:
int) (
k:
code) :=
if is_rlw_mask mask then
Prlwinm r1 r2 amount mask ::
k
else
Prlwinm r1 r2 amount Int.mone ::
andimm_base r1 r1 mask k.
Smart constructors for 64-bit integer constants
Definition low64_u (
n:
int64) :=
Int64.zero_ext 16
n.
Definition low64_s (
n:
int64) :=
Int64.sign_ext 16
n.
Definition loadimm64_32s (
r:
ireg) (
n:
int64) (
k:
code) :=
let lo_u :=
low64_u n in
let lo_s :=
low64_s n in
let hi_s :=
low64_s (
Int64.shr n (
Int64.repr 16))
in
if Int64.eq n lo_s then
Paddi64 r GPR0 n ::
k
else
Paddis64 r GPR0 hi_s ::
Pori64 r r lo_u ::
k.
Definition loadimm64 (
r:
ireg) (
n:
int64) (
k:
code) :=
if Int64.eq n (
Int64.sign_ext 32
n)
then
loadimm64_32s r n k
else
Pldi r n ::
k.
loadimm64_notemp is a variant of loadimm64 that uses no temporary
register. The code it produces is larger and slower than the code
produced by loadimm64, but it is sometimes useful to preserve all registers
except the destination.
Definition loadimm64_notemp (
r:
ireg) (
n:
int64) (
k:
code) :=
if Int64.eq n (
Int64.sign_ext 32
n)
then
loadimm64_32s r n k
else
loadimm64_32s r (
Int64.shru n (
Int64.repr 32))
(
Prldinm r r (
Int.repr 32) (
Int64.shl Int64.mone (
Int64.repr 32)) ::
Poris64 r r (
low64_u (
Int64.shru n (
Int64.repr 16))) ::
Pori64 r r (
low64_u n) ::
k).
Definition opimm64 (
insn2:
ireg ->
ireg ->
ireg ->
instruction)
(
insn1:
ireg ->
ireg ->
int64 ->
instruction)
(
r1 r2:
ireg) (
n:
int64) (
ok:
bool) (
k:
code) :=
if ok then
insn1 r1 r2 n ::
k
else if ireg_eq r2 GPR12 then
Pmr GPR0 GPR12 ::
loadimm64 GPR12 n (
insn2 r1 GPR0 GPR12 ::
k)
else
loadimm64 GPR0 n (
insn2 r1 r2 GPR0 ::
k).
Definition addimm64 (
r1 r2:
ireg) (
n:
int64) (
k :
code) :=
opimm64 Padd64 Paddi64 r1 r2 n (
Int64.eq n (
low64_s n))
k.
Definition orimm64 (
r1 r2:
ireg) (
n:
int64) (
k :
code) :=
opimm64 Por64 Pori64 r1 r2 n (
Int64.eq n (
low64_u n))
k.
Definition xorimm64 (
r1 r2:
ireg) (
n:
int64) (
k :
code) :=
opimm64 Pxor64 Pxori64 r1 r2 n (
Int64.eq n (
low64_u n))
k.
Definition andimm64_base (
r1 r2:
ireg) (
n:
int64) (
k :
code) :=
opimm64 Pand_64 Pandi_64 r1 r2 n (
Int64.eq n (
low64_u n))
k.
Definition andimm64 (
r1 r2:
ireg) (
n:
int64) (
k :
code) :=
if is_rldl_mask n ||
is_rldr_mask n then
Prldinm r1 r2 Int.zero n ::
k
else
andimm64_base r1 r2 n k.
Definition rolm64 (
r1 r2:
ireg) (
amount:
int) (
mask:
int64) (
k:
code) :=
if is_rldl_mask mask ||
is_rldr_mask mask
|| (
let mask' :=
Int64.shru'
mask amount in
Int64.eq mask (
Int64.shl'
mask'
amount) &&
is_rldl_mask mask')
then
Prldinm r1 r2 amount mask ::
k
else
Prldinm r1 r2 amount Int64.mone ::
andimm64_base r1 r1 mask k.
Accessing slots in the stack frame.
Definition accessind {
A:
Type}
(
instr1:
A ->
constant ->
ireg ->
instruction)
(
instr2:
A ->
ireg ->
ireg ->
instruction)
(
unaligned :
bool)
(
base:
ireg) (
ofs:
ptrofs) (
r:
A) (
k:
code) :=
let ofs :=
Ptrofs.to_int ofs in
if Int.eq (
high_s ofs)
Int.zero && (
unaligned || (
Int.eq (
Int.mods ofs (
Int.repr 4))
Int.zero))
then instr1 r (
Cint ofs)
base ::
k
else loadimm GPR0 ofs (
instr2 r base GPR0 ::
k).
Definition loadind (
base:
ireg) (
ofs:
ptrofs) (
ty:
typ) (
dst:
mreg) (
k:
code) :=
match ty,
preg_of dst with
|
Tint,
IR r =>
OK(
accessind Plwz Plwzx true base ofs r k)
|
Tany32,
IR r =>
OK(
accessind Plwz_a Plwzx_a true base ofs r k)
|
Tsingle,
FR r =>
OK(
accessind Plfs Plfsx true base ofs r k)
|
Tlong,
IR r =>
OK(
accessind Pld Pldx false base ofs r k)
|
Tfloat,
FR r =>
OK(
accessind Plfd Plfdx true base ofs r k)
|
Tany64,
IR r =>
OK(
accessind Pld_a Pldx_a false base ofs r k)
|
Tany64,
FR r =>
OK(
accessind Plfd_a Plfdx_a true base ofs r k)
|
_,
_ =>
Error (
msg "
Asmgen.loadind")
end.
Definition storeind (
src:
mreg) (
base:
ireg) (
ofs:
ptrofs) (
ty:
typ) (
k:
code) :=
match ty,
preg_of src with
|
Tint,
IR r =>
OK(
accessind Pstw Pstwx true base ofs r k)
|
Tany32,
IR r =>
OK(
accessind Pstw_a Pstwx_a true base ofs r k)
|
Tsingle,
FR r =>
OK(
accessind Pstfs Pstfsx true base ofs r k)
|
Tlong,
IR r =>
OK(
accessind Pstd Pstdx false base ofs r k)
|
Tfloat,
FR r =>
OK(
accessind Pstfd Pstfdx true base ofs r k)
|
Tany64,
IR r =>
OK(
accessind Pstd_a Pstdx_a false base ofs r k)
|
Tany64,
FR r =>
OK(
accessind Pstfd_a Pstfdx_a true base ofs r k)
|
_,
_ =>
Error (
msg "
Asmgen.storeind")
end.
Constructor for a floating-point comparison. The PowerPC has
a single fcmpu instruction to compare floats, which sets
bits 0, 1 and 2 of the condition register to reflect ``less'',
``greater'' and ``equal'' conditions, respectively.
The ``less or equal'' and ``greater or equal'' conditions must be
synthesized by a cror instruction that computes the logical ``or''
of the corresponding two conditions.
Definition floatcomp (
cmp:
comparison) (
r1 r2:
freg) (
k:
code) :=
Pfcmpu r1 r2 ::
match cmp with
|
Cle =>
Pcror CRbit_3 CRbit_2 CRbit_0 ::
k
|
Cge =>
Pcror CRbit_3 CRbit_2 CRbit_1 ::
k
|
_ =>
k
end.
Translation of a condition. Prepends to k the instructions
that evaluate the condition and leave its boolean result in one of
the bits of the condition register. The bit in question is
determined by the crbit_for_cond function.
Definition transl_cond
(
cond:
condition) (
args:
list mreg) (
k:
code) :=
match cond,
args with
|
Ccomp c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK (
Pcmpw r1 r2 ::
k)
|
Ccompu c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK (
Pcmplw r1 r2 ::
k)
|
Ccompimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
if Int.eq (
high_s n)
Int.zero then
OK (
Pcmpwi r1 (
Cint n) ::
k)
else
OK (
loadimm GPR0 n (
Pcmpw r1 GPR0 ::
k))
|
Ccompuimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
if Int.eq (
high_u n)
Int.zero then
OK (
Pcmplwi r1 (
Cint n) ::
k)
else
OK (
loadimm GPR0 n (
Pcmplw r1 GPR0 ::
k))
|
Ccompf cmp,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
OK (
floatcomp cmp r1 r2 k)
|
Cnotcompf cmp,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
OK (
floatcomp cmp r1 r2 k)
|
Cmaskzero n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK (
andimm_base GPR0 r1 n k)
|
Cmasknotzero n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK (
andimm_base GPR0 r1 n k)
|
Ccompl c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK (
Pcmpd r1 r2 ::
k)
|
Ccomplu c,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK (
Pcmpld r1 r2 ::
k)
|
Ccomplimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
if Int64.eq n (
low64_s n)
then
OK (
Pcmpdi r1 n ::
k)
else
OK (
loadimm64_notemp GPR0 n (
Pcmpd r1 GPR0 ::
k))
|
Ccompluimm c n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
if Int64.eq n (
low64_u n)
then
OK (
Pcmpldi r1 n ::
k)
else
OK (
loadimm64_notemp GPR0 n (
Pcmpld r1 GPR0 ::
k))
|
_,
_ =>
Error(
msg "
Asmgen.transl_cond")
end.
Definition crbit_for_icmp (
cmp:
comparison) :=
match cmp with
|
Ceq => (
CRbit_2,
true)
|
Cne => (
CRbit_2,
false)
|
Clt => (
CRbit_0,
true)
|
Cle => (
CRbit_1,
false)
|
Cgt => (
CRbit_1,
true)
|
Cge => (
CRbit_0,
false)
end.
Definition crbit_for_fcmp (
cmp:
comparison) :=
match cmp with
|
Ceq => (
CRbit_2,
true)
|
Cne => (
CRbit_2,
false)
|
Clt => (
CRbit_0,
true)
|
Cle => (
CRbit_3,
true)
|
Cgt => (
CRbit_1,
true)
|
Cge => (
CRbit_3,
true)
end.
Definition crbit_for_cond (
cond:
condition) :=
match cond with
|
Ccomp cmp =>
crbit_for_icmp cmp
|
Ccompu cmp =>
crbit_for_icmp cmp
|
Ccompimm cmp n =>
crbit_for_icmp cmp
|
Ccompuimm cmp n =>
crbit_for_icmp cmp
|
Ccompf cmp =>
crbit_for_fcmp cmp
|
Cnotcompf cmp =>
let p :=
crbit_for_fcmp cmp in (
fst p,
negb (
snd p))
|
Cmaskzero n => (
CRbit_2,
true)
|
Cmasknotzero n => (
CRbit_2,
false)
|
Ccompl cmp =>
crbit_for_icmp cmp
|
Ccomplu cmp =>
crbit_for_icmp cmp
|
Ccomplimm cmp n =>
crbit_for_icmp cmp
|
Ccompluimm cmp n =>
crbit_for_icmp cmp
end.
Recognition of comparisons >= 0 and < 0.
Inductive condition_class:
condition ->
list mreg ->
Type :=
|
condition_eq0:
forall n r,
n =
Int.zero ->
condition_class (
Ccompimm Ceq n) (
r ::
nil)
|
condition_ne0:
forall n r,
n =
Int.zero ->
condition_class (
Ccompimm Cne n) (
r ::
nil)
|
condition_ge0:
forall n r,
n =
Int.zero ->
condition_class (
Ccompimm Cge n) (
r ::
nil)
|
condition_lt0:
forall n r,
n =
Int.zero ->
condition_class (
Ccompimm Clt n) (
r ::
nil)
|
condition_default:
forall c rl,
condition_class c rl.
Definition classify_condition (
c:
condition) (
args:
list mreg):
condition_class c args :=
match c as z1,
args as z2 return condition_class z1 z2 with
|
Ccompimm Ceq n,
r ::
nil =>
match Int.eq_dec n Int.zero with
|
left EQ =>
condition_eq0 n r EQ
|
right _ =>
condition_default (
Ccompimm Ceq n) (
r ::
nil)
end
|
Ccompimm Cne n,
r ::
nil =>
match Int.eq_dec n Int.zero with
|
left EQ =>
condition_ne0 n r EQ
|
right _ =>
condition_default (
Ccompimm Cne n) (
r ::
nil)
end
|
Ccompimm Cge n,
r ::
nil =>
match Int.eq_dec n Int.zero with
|
left EQ =>
condition_ge0 n r EQ
|
right _ =>
condition_default (
Ccompimm Cge n) (
r ::
nil)
end
|
Ccompimm Clt n,
r ::
nil =>
match Int.eq_dec n Int.zero with
|
left EQ =>
condition_lt0 n r EQ
|
right _ =>
condition_default (
Ccompimm Clt n) (
r ::
nil)
end
|
x,
y =>
condition_default x y
end.
Translation of a condition operator. The generated code sets
the r target register to 0 or 1 depending on the truth value of the
condition.
Definition transl_cond_op
(
cond:
condition) (
args:
list mreg) (
r:
mreg) (
k:
code) :=
do r' <-
ireg_of r;
match classify_condition cond args with
|
condition_eq0 _ a _ =>
do a' <-
ireg_of a;
OK (
Psubfic GPR0 a' (
Cint Int.zero) ::
Padde r'
GPR0 a' ::
k)
|
condition_ne0 _ a _ =>
do a' <-
ireg_of a;
OK (
Paddic GPR0 a' (
Cint Int.mone) ::
Psubfe r'
GPR0 a' ::
k)
|
condition_ge0 _ a _ =>
do a' <-
ireg_of a;
OK (
Prlwinm r'
a'
Int.one Int.one ::
Pxori r'
r' (
Cint Int.one) ::
k)
|
condition_lt0 _ a _ =>
do a' <-
ireg_of a;
OK (
Prlwinm r'
a'
Int.one Int.one ::
k)
|
condition_default _ _ =>
let p :=
crbit_for_cond cond in
transl_cond cond args
(
Pmfcrbit r' (
fst p) ::
if snd p
then k
else Pxori r'
r' (
Cint Int.one) ::
k)
end.
Translation of a select operation
Definition transl_select_op
(
cond:
condition) (
args:
list mreg) (
r1 r2 rd:
ireg) (
k:
code) :=
if ireg_eq r1 r2 then
OK (
Pmr rd r1 ::
k)
else
(
let p :=
crbit_for_cond cond in
let r1' :=
if snd p then r1 else r2 in
let r2' :=
if snd p then r2 else r1 in
transl_cond cond args (
Pisel rd r1'
r2' (
fst p) ::
k)).
Definition transl_fselect_op
(
cond:
condition) (
args:
list mreg) (
r1 r2 rd:
freg) (
k:
code) :=
if freg_eq r1 r2 then
OK (
Pfmr rd r1 ::
k)
else
(
let p :=
crbit_for_cond cond in
let r1' :=
if snd p then r1 else r2 in
let r2' :=
if snd p then r2 else r1 in
transl_cond cond args (
Pfsel_gen rd r1'
r2' (
fst p) ::
k)).
Translation of the arithmetic operation r <- op(args).
The corresponding instructions are prepended to k.
Definition transl_op
(
op:
operation) (
args:
list mreg) (
res:
mreg) (
k:
code) :=
match op,
args with
|
Omove,
a1 ::
nil =>
match preg_of res,
preg_of a1 with
|
IR r,
IR a =>
OK (
Pmr r a ::
k)
|
FR r,
FR a =>
OK (
Pfmr r a ::
k)
|
_ ,
_ =>
Error(
msg "
Asmgen.Omove")
end
|
Ointconst n,
nil =>
do r <-
ireg_of res;
OK (
loadimm r n k)
|
Ofloatconst f,
nil =>
do r <-
freg_of res;
OK (
Plfi r f ::
k)
|
Osingleconst f,
nil =>
do r <-
freg_of res;
OK (
Plfis r f ::
k)
|
Oaddrsymbol s ofs,
nil =>
do r <-
ireg_of res;
OK (
if symbol_is_small_data s ofs then
Paddi r GPR0 (
Csymbol_sda s ofs) ::
k
else if symbol_is_rel_data s ofs then
Paddis r GPR0 (
Csymbol_rel_high s ofs) ::
Paddi r r (
Csymbol_rel_low s ofs) ::
k
else
Paddis r GPR0 (
Csymbol_high s ofs) ::
Paddi r r (
Csymbol_low s ofs) ::
k)
|
Oaddrstack n,
nil =>
do r <-
ireg_of res;
OK (
addimm r GPR1 (
Ptrofs.to_int n)
k)
|
Ocast8signed,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Pextsb r r1 ::
k)
|
Ocast16signed,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Pextsh r r1 ::
k)
|
Oadd,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Padd r r1 r2 ::
k)
|
Oaddimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
addimm r r1 n k)
|
Oaddsymbol s ofs,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
if symbol_is_small_data s ofs then
Paddi GPR0 GPR0 (
Csymbol_sda s ofs) ::
Padd r r1 GPR0 ::
k
else if symbol_is_rel_data s ofs then
Pmr GPR0 r1 ::
Paddis r GPR0 (
Csymbol_rel_high s ofs) ::
Paddi r r (
Csymbol_rel_low s ofs) ::
Padd r r GPR0 ::
k
else
Paddis r r1 (
Csymbol_high s ofs) ::
Paddi r r (
Csymbol_low s ofs) ::
k)
|
Osub,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psubfc r r2 r1 ::
k)
|
Osubimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
if Int.eq (
high_s n)
Int.zero then
Psubfic r r1 (
Cint n) ::
k
else
loadimm GPR0 n (
Psubfc r r1 GPR0 ::
k))
|
Omul,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pmullw r r1 r2 ::
k)
|
Omulimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
if Int.eq (
high_s n)
Int.zero then
Pmulli r r1 (
Cint n) ::
k
else
loadimm GPR0 n (
Pmullw r r1 GPR0 ::
k))
|
Omulhs,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pmulhw r r1 r2 ::
k)
|
Omulhu,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pmulhwu r r1 r2 ::
k)
|
Odiv,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pdivw r r1 r2 ::
k)
|
Odivu,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pdivwu r r1 r2 ::
k)
|
Oand,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pand_ r r1 r2 ::
k)
|
Oandimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
andimm r r1 n k)
|
Oor,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Por r r1 r2 ::
k)
|
Oorimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
orimm r r1 n k)
|
Oxor,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pxor r r1 r2 ::
k)
|
Oxorimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
xorimm r r1 n k)
|
Onot,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Pnor r r1 r1 ::
k)
|
Onand,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pnand r r1 r2 ::
k)
|
Onor,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pnor r r1 r2 ::
k)
|
Onxor,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Peqv r r1 r2 ::
k)
|
Oandc,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pandc r r1 r2 ::
k)
|
Oorc,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Porc r r1 r2 ::
k)
|
Oshl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pslw r r1 r2 ::
k)
|
Oshr,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psraw r r1 r2 ::
k)
|
Oshrimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Psrawi r r1 n ::
k)
|
Oshrximm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Psrawi r r1 n ::
Paddze r r ::
k)
|
Oshru,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psrw r r1 r2 ::
k)
|
Orolm amount mask,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
rolm r r1 amount mask k)
|
Oroli amount mask,
a1 ::
a2 ::
nil =>
assertion (
mreg_eq a1 res);
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Prlwimi r r2 amount mask ::
k)
|
Onegf,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
freg_of res;
OK (
Pfneg r r1 ::
k)
|
Oabsf,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
freg_of res;
OK (
Pfabs r r1 ::
k)
|
Oaddf,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfadd r r1 r2 ::
k)
|
Osubf,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfsub r r1 r2 ::
k)
|
Omulf,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfmul r r1 r2 ::
k)
|
Odivf,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfdiv r r1 r2 ::
k)
|
Onegfs,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
freg_of res;
OK (
Pfnegs r r1 ::
k)
|
Oabsfs,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
freg_of res;
OK (
Pfabss r r1 ::
k)
|
Oaddfs,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfadds r r1 r2 ::
k)
|
Osubfs,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfsubs r r1 r2 ::
k)
|
Omulfs,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfmuls r r1 r2 ::
k)
|
Odivfs,
a1 ::
a2 ::
nil =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
OK (
Pfdivs r r1 r2 ::
k)
|
Osingleoffloat,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
freg_of res;
OK (
Pfrsp r r1 ::
k)
|
Ofloatofsingle,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
freg_of res;
OK (
Pfxdp r r1 ::
k)
|
Ointoffloat,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
ireg_of res;
OK (
Pfcti r r1 ::
k)
|
Ofloatofwords,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
freg_of res;
OK (
Pfmake r r1 r2 ::
k)
|
Omakelong,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Plmake r r1 r2 ::
k)
|
Olowlong,
a1 ::
nil =>
assertion (
mreg_eq a1 res);
do r <-
ireg_of res;
OK (
Pllo r ::
k)
|
Ohighlong,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Plhi r r1 ::
k)
|
Ocmp cmp,
_ =>
transl_cond_op cmp args res k
|
Osel cmp ty,
a1 ::
a2 ::
args =>
match preg_of res with
|
IR r1 =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
transl_select_op cmp args r1 r2 r k
|
FR r =>
do r1 <-
freg_of a1;
do r2 <-
freg_of a2;
do r <-
freg_of res;
transl_fselect_op cmp args r1 r2 r k
|
_ =>
Error (
msg "
Asmgen.Osel")
end
|
Olongconst n,
nil =>
do r <-
ireg_of res;
OK (
loadimm64 r n k)
|
Ocast32signed,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Pextsw r r1 ::
k)
|
Ocast32unsigned,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Pextzw r r1 ::
k)
|
Oaddl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Padd64 r r1 r2 ::
k)
|
Oaddlimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
addimm64 r r1 n k)
|
Osubl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psubfc64 r r2 r1 ::
k)
|
Onegl,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Psubfic64 r r1 Int64.zero ::
k)
|
Omull,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pmulld r r1 r2 ::
k)
|
Omullhs,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pmulhd r r1 r2 ::
k)
|
Omullhu,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pmulhdu r r1 r2 ::
k)
|
Odivl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pdivd r r1 r2 ::
k)
|
Odivlu,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pdivdu r r1 r2 ::
k)
|
Oandl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pand_64 r r1 r2 ::
k)
|
Oandlimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
andimm64 r r1 n k)
|
Oorl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Por64 r r1 r2 ::
k)
|
Oorlimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
orimm64 r r1 n k)
|
Oxorl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Pxor64 r r1 r2 ::
k)
|
Oxorlimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
xorimm64 r r1 n k)
|
Onotl,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Pnor64 r r1 r1 ::
k)
|
Oshll,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psld r r1 r2 ::
k)
|
Oshrl,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psrad r r1 r2 ::
k)
|
Oshrlimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Psradi r r1 n ::
k)
|
Oshrlu,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
do r <-
ireg_of res;
OK (
Psrd r r1 r2 ::
k)
|
Orolml amount mask,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
rolm64 r r1 amount mask k)
|
Oshrxlimm n,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
ireg_of res;
OK (
Psradi r r1 n ::
Paddze64 r r ::
k)
|
Olongoffloat,
a1 ::
nil =>
do r1 <-
freg_of a1;
do r <-
ireg_of res;
OK (
Pfctid r r1 ::
k)
|
Ofloatoflong,
a1 ::
nil =>
do r1 <-
ireg_of a1;
do r <-
freg_of res;
OK (
Pfcfl r r1 ::
k)
|
_,
_ =>
Error(
msg "
Asmgen.transl_op")
end.
Translation of memory accesses: loads, and stores.
Definition int_temp_for (
r:
mreg) :=
if mreg_eq r R12 then GPR11 else GPR12.
Definition symbol_ofs_word_aligned symb ofs :=
let ofs :=
Ptrofs.to_int ofs in
symbol_is_aligned symb 4 && (
Int.eq (
Int.mods ofs (
Int.repr 4))
Int.zero).
Definition aindexed
(
mk1:
constant ->
ireg ->
code ->
code)
(
mk2:
ireg ->
ireg ->
code ->
code)
(
unaligned :
bool) (
r1 temp:
ireg) (
ofs:
int) (
k:
code) :=
if unaligned ||
Int.eq (
Int.mods ofs (
Int.repr 4))
Int.zero then
if Int.eq (
high_s ofs)
Int.zero then
mk1 (
Cint ofs)
r1 k
else
Paddis temp r1 (
Cint (
high_s ofs)) ::
mk1 (
Cint (
low_s ofs))
temp k
else
(
loadimm GPR0 ofs (
mk2 r1 GPR0 k)).
Definition aindexed2
(
mk:
ireg ->
ireg ->
code ->
code)
(
r1 r2:
ireg) (
k:
code) :=
mk r1 r2 k.
Definition aglobal
(
mk1:
constant ->
ireg ->
code ->
code)
(
mk2:
ireg ->
ireg ->
code ->
code)
(
unaligned :
bool) (
temp:
ireg)
symb ofs k :=
if symbol_is_small_data symb ofs then
if unaligned ||
symbol_ofs_word_aligned symb ofs then
mk1 (
Csymbol_sda symb ofs)
GPR0 k
else
Paddi temp GPR0 (
Csymbol_sda symb ofs) ::
mk1 (
Cint Int.zero)
temp k
else if symbol_is_rel_data symb ofs then
Paddis temp GPR0 (
Csymbol_rel_high symb ofs) ::
Paddi temp temp (
Csymbol_rel_low symb ofs) ::
mk1 (
Cint Int.zero)
temp k
else if unaligned ||
symbol_ofs_word_aligned symb ofs then
Paddis temp GPR0 (
Csymbol_high symb ofs) ::
mk1 (
Csymbol_low symb ofs)
temp k
else
Paddis temp GPR0 (
Csymbol_high symb ofs) ::
Paddi temp temp (
Csymbol_low symb ofs) ::
mk1 (
Cint Int.zero)
temp k.
Definition abased
(
mk1:
constant ->
ireg ->
code ->
code)
(
mk2:
ireg ->
ireg ->
code ->
code)
(
unaligned :
bool) (
r1 temp:
ireg)
symb ofs k :=
if symbol_is_small_data symb ofs then
Paddi GPR0 GPR0 (
Csymbol_sda symb ofs) ::
mk2 r1 GPR0 k
else if symbol_is_rel_data symb ofs then
Pmr GPR0 r1 ::
Paddis temp GPR0 (
Csymbol_rel_high symb ofs) ::
Paddi temp temp (
Csymbol_rel_low symb ofs) ::
mk2 temp GPR0 k
else if unaligned ||
symbol_ofs_word_aligned symb ofs then
Paddis temp r1 (
Csymbol_high symb ofs) ::
mk1 (
Csymbol_low symb ofs)
temp k
else
Pmr GPR0 r1 ::
Paddis temp GPR0 (
Csymbol_high symb ofs) ::
Paddi temp temp (
Csymbol_low symb ofs) ::
mk2 temp GPR0 k.
Definition ainstack
(
mk1 :
constant ->
ireg ->
code ->
code)
(
mk2 :
ireg ->
ireg ->
code ->
code)
(
unaligned :
bool) (
temp:
ireg)
ofs k :=
if unaligned ||
Int.eq (
Int.mods ofs (
Int.repr 4))
Int.zero then
if Int.eq (
high_s ofs)
Int.zero then
mk1 (
Cint ofs)
GPR1 k
else
Paddis temp GPR1 (
Cint (
high_s ofs)) ::
mk1 (
Cint (
low_s ofs))
temp k
else
addimm temp GPR1 ofs (
mk1 (
Cint Int.zero)
temp k).
Definition transl_memory_access
(
mk1:
constant ->
ireg ->
instruction)
(
mk2:
ireg ->
ireg ->
instruction)
(
unaligned :
bool)
(
addr:
addressing) (
args:
list mreg)
(
temp:
ireg) (
k:
code) :=
match addr,
args with
|
Aindexed ofs,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK (
aindexed (
fun c r k =>
mk1 c r ::
k) (
fun r1 r2 k =>
mk2 r1 r2 ::
k)
unaligned r1 temp ofs k)
|
Aindexed2,
a1 ::
a2 ::
nil =>
do r1 <-
ireg_of a1;
do r2 <-
ireg_of a2;
OK (
aindexed2 (
fun r1 r2 k =>
mk2 r1 r2 ::
k)
r1 r2 k)
|
Aglobal symb ofs,
nil =>
OK (
aglobal (
fun c r k =>
mk1 c r ::
k) (
fun r1 r2 k =>
mk2 r1 r2 ::
k)
unaligned temp symb ofs k)
|
Abased symb ofs,
a1 ::
nil =>
do r1 <-
ireg_of a1;
OK (
abased (
fun c r k =>
mk1 c r ::
k) (
fun r1 r2 k =>
mk2 r1 r2 ::
k)
unaligned r1 temp symb ofs k)
|
Ainstack ofs,
nil =>
let ofs :=
Ptrofs.to_int ofs in
OK (
ainstack (
fun c r k =>
mk1 c r ::
k) (
fun r1 r2 k =>
mk2 r1 r2 ::
k)
unaligned temp ofs k)
|
_,
_ =>
Error(
msg "
Asmgen.transl_memory_access")
end.
Definition transl_load (
chunk:
memory_chunk) (
addr:
addressing)
(
args:
list mreg) (
dst:
mreg) (
k:
code) :=
match chunk with
|
Mint8signed =>
do r <-
ireg_of dst;
transl_memory_access (
Plbz r) (
Plbzx r)
true addr args GPR12 (
Pextsb r r ::
k)
|
Mint8unsigned =>
do r <-
ireg_of dst;
transl_memory_access (
Plbz r) (
Plbzx r)
true addr args GPR12 k
|
Mint16signed =>
do r <-
ireg_of dst;
transl_memory_access (
Plha r) (
Plhax r)
true addr args GPR12 k
|
Mint16unsigned =>
do r <-
ireg_of dst;
transl_memory_access (
Plhz r) (
Plhzx r)
true addr args GPR12 k
|
Mint32 =>
do r <-
ireg_of dst;
transl_memory_access (
Plwz r) (
Plwzx r)
true addr args GPR12 k
|
Mint64 =>
do r <-
ireg_of dst;
transl_memory_access (
Pld r) (
Pldx r)
false addr args GPR12 k
|
Mfloat32 =>
do r <-
freg_of dst;
transl_memory_access (
Plfs r) (
Plfsx r)
true addr args GPR12 k
|
Mfloat64 =>
do r <-
freg_of dst;
transl_memory_access (
Plfd r) (
Plfdx r)
true addr args GPR12 k
|
_ =>
Error (
msg "
Asmgen.transl_load")
end.
Definition transl_store (
chunk:
memory_chunk) (
addr:
addressing)
(
args:
list mreg) (
src:
mreg) (
k:
code) :=
let temp :=
int_temp_for src in
match chunk with
|
Mint8signed |
Mint8unsigned =>
do r <-
ireg_of src;
transl_memory_access (
Pstb r) (
Pstbx r)
true addr args temp k
|
Mint16signed |
Mint16unsigned =>
do r <-
ireg_of src;
transl_memory_access (
Psth r) (
Psthx r)
true addr args temp k
|
Mint32 =>
do r <-
ireg_of src;
transl_memory_access (
Pstw r) (
Pstwx r)
true addr args temp k
|
Mint64 =>
do r <-
ireg_of src;
transl_memory_access (
Pstd r) (
Pstdx r)
false addr args temp k
|
Mfloat32 =>
do r <-
freg_of src;
transl_memory_access (
Pstfs r) (
Pstfsx r)
true addr args temp k
|
Mfloat64 =>
do r <-
freg_of src;
transl_memory_access (
Pstfd r) (
Pstfdx r)
true addr args temp k
|
_ =>
Error (
msg "
Asmgen.transl_store")
end.
Function epilogue: reload return address into register LR and
free the stack frame. No need to reload the return address if
this is a tail function.
Definition transl_epilogue (
f:
Mach.function) (
k:
code) :=
if is_leaf_function f then
Pfreeframe f.(
fn_stacksize)
f.(
fn_link_ofs) ::
k
else
Plwz GPR0 (
Cint (
Ptrofs.to_int f.(
fn_retaddr_ofs)))
GPR1 ::
Pmtlr GPR0 ::
Pfreeframe f.(
fn_stacksize)
f.(
fn_link_ofs) ::
k.
Translation of a Mach instruction.
Definition transl_instr (
f:
Mach.function) (
i:
Mach.instruction)
(
r11_is_parent:
bool) (
k:
code) :=
match i with
|
Mgetstack ofs ty dst =>
loadind GPR1 ofs ty dst k
|
Msetstack src ofs ty =>
storeind src GPR1 ofs ty k
|
Mgetparam ofs ty dst =>
if r11_is_parent then
loadind GPR11 ofs ty dst k
else
(
do k1 <-
loadind GPR11 ofs ty dst k;
loadind GPR1 f.(
fn_link_ofs)
Tint R11 k1)
|
Mop op args res =>
transl_op op args res k
|
Mload chunk addr args dst =>
transl_load chunk addr args dst k
|
Mstore chunk addr args src =>
transl_store chunk addr args src k
|
Mcall sig (
inl r) =>
do r1 <-
ireg_of r;
OK (
Pmtctr r1 ::
Pbctrl sig ::
k)
|
Mcall sig (
inr symb) =>
OK (
Pbl symb sig ::
k)
|
Mtailcall sig (
inl r) =>
do r1 <-
ireg_of r;
OK (
Pmtctr r1 ::
transl_epilogue f (
Pbctr sig ::
k))
|
Mtailcall sig (
inr symb) =>
OK (
transl_epilogue f (
Pbs symb sig ::
k))
|
Mbuiltin ef args res =>
OK (
Pbuiltin ef (
List.map (
map_builtin_arg preg_of)
args) (
map_builtin_res preg_of res) ::
k)
|
Mlabel lbl =>
OK (
Plabel lbl ::
k)
|
Mgoto lbl =>
OK (
Pb lbl ::
k)
|
Mcond cond args lbl =>
let p :=
crbit_for_cond cond in
transl_cond cond args
(
if (
snd p)
then Pbt (
fst p)
lbl ::
k else Pbf (
fst p)
lbl ::
k)
|
Mjumptable arg tbl =>
do r <-
ireg_of arg;
OK (
Pbtbl r tbl ::
k)
|
Mreturn =>
OK (
transl_epilogue f (
Pblr ::
k))
end.
Translation of a code sequence
Definition it1_is_parent (
before:
bool) (
i:
Mach.instruction) :
bool :=
match i with
|
Msetstack src ofs ty =>
before
|
Mgetparam ofs ty dst =>
negb (
mreg_eq dst R11)
|
Mop Omove args res =>
before &&
negb (
mreg_eq res R11)
|
_ =>
false
end.
This is the naive definition that we no longer use because it
is not tail-recursive. It is kept as specification.
Fixpoint transl_code (
f:
Mach.function) (
il:
list Mach.instruction) (
it1p:
bool) :=
match il with
|
nil =>
OK nil
|
i1 ::
il' =>
do k <-
transl_code f il' (
it1_is_parent it1p i1);
transl_instr f i1 it1p k
end.
This is an equivalent definition in continuation-passing style
that runs in constant stack space.
Fixpoint transl_code_rec (
f:
Mach.function) (
il:
list Mach.instruction)
(
it1p:
bool) (
k:
code ->
res code) :=
match il with
|
nil =>
k nil
|
i1 ::
il' =>
transl_code_rec f il' (
it1_is_parent it1p i1)
(
fun c1 =>
do c2 <-
transl_instr f i1 it1p c1;
k c2)
end.
Definition transl_code' (
f:
Mach.function) (
il:
list Mach.instruction) (
it1p:
bool) :=
transl_code_rec f il it1p (
fun c =>
OK c).
Translation of a whole function. Note that we must check
that the generated code contains less than 2^32 instructions,
otherwise the offset part of the PC code pointer could wrap
around, leading to incorrect executions.
Definition transl_function (
f:
Mach.function) :=
do c <-
transl_code'
f f.(
Mach.fn_code)
false;
OK (
mkfunction f.(
Mach.fn_sig)
(
Pallocframe f.(
fn_stacksize)
f.(
fn_link_ofs)
f.(
fn_retaddr_ofs) ::
Pmflr GPR0 ::
Pstw GPR0 (
Cint (
Ptrofs.to_int f.(
fn_retaddr_ofs)))
GPR1 ::
Pcfi_rel_offset (
Ptrofs.to_int f.(
fn_retaddr_ofs)) ::
c)).
Definition transf_function (
f:
Mach.function) :
res Asm.function :=
do tf <-
transl_function f;
if zlt Ptrofs.max_unsigned (
list_length_z tf.(
fn_code))
then Error (
msg "
code size exceeded")
else OK tf.
Definition transf_fundef (
f:
Mach.fundef) :
res Asm.fundef :=
transf_partial_fundef transf_function f.
Definition transf_program (
p:
Mach.program) :
res Asm.program :=
transform_partial_program transf_fundef p.