Module NeedOp
Require
Import
Coqlib
.
Require
Import
AST
.
Require
Import
Integers
.
Require
Import
Floats
.
Require
Import
Values
.
Require
Import
Memory
.
Require
Import
Globalenvs
.
Require
Import
Op
.
Require
Import
NeedDomain
.
Require
Import
RTL
.
Neededness analysis for PowerPC operators
Definition
op1
(
nv
:
nval
) :=
nv
::
nil
.
Definition
op2
(
nv
:
nval
) :=
nv
::
nv
::
nil
.
Definition
needs_of_condition
(
cond
:
condition
):
list
nval
:=
match
cond
with
|
Cmaskzero
n
|
Cmasknotzero
n
=>
op1
(
maskzero
n
)
| _ =>
nil
end
.
Definition
needs_of_operation
(
op
:
operation
) (
nv
:
nval
):
list
nval
:=
match
op
with
|
Omove
=>
op1
nv
|
Ointconst
n
=>
nil
|
Ofloatconst
n
=>
nil
|
Osingleconst
n
=>
nil
|
Oaddrsymbol
id
ofs
=>
nil
|
Oaddrstack
ofs
=>
nil
|
Ocast8signed
=>
op1
(
sign_ext
8
nv
)
|
Ocast16signed
=>
op1
(
sign_ext
16
nv
)
|
Oadd
=>
op2
(
modarith
nv
)
|
Oaddimm
n
=>
op1
(
modarith
nv
)
|
Oaddsymbol
id
ofs
=>
op1
(
modarith
nv
)
|
Osub
=>
op2
(
default
nv
)
|
Osubimm
n
=>
op1
(
default
nv
)
|
Omul
=>
op2
(
modarith
nv
)
|
Omulimm
n
=>
op1
(
modarith
nv
)
|
Omulhs
|
Omulhu
|
Odiv
|
Odivu
=>
op2
(
default
nv
)
|
Oand
=>
op2
(
bitwise
nv
)
|
Oandimm
n
=>
op1
(
andimm
nv
n
)
|
Oor
=>
op2
(
bitwise
nv
)
|
Oorimm
n
=>
op1
(
orimm
nv
n
)
|
Oxor
=>
op2
(
bitwise
nv
)
|
Oxorimm
n
=>
op1
(
bitwise
nv
)
|
Onot
=>
op1
(
bitwise
nv
)
|
Onand
|
Onor
|
Onxor
|
Oandc
|
Oorc
=>
op2
(
bitwise
nv
)
|
Oshl
|
Oshr
|
Oshru
=>
op2
(
default
nv
)
|
Oshrimm
n
=>
op1
(
shrimm
nv
n
)
|
Oshrximm
n
=>
op1
(
default
nv
)
|
Orolm
amount
mask
=>
op1
(
rolm
nv
amount
mask
)
|
Oroli
amount
mask
=>
op1
(
default
nv
)
|
Olongconst
n
=>
nil
|
Ocast32signed
|
Ocast32unsigned
|
Onegl
|
Onotl
=>
op1
(
default
nv
)
|
Oaddl
|
Osubl
|
Omull
|
Omullhs
|
Omullhu
|
Odivl
|
Odivlu
|
Oandl
|
Oorl
|
Oxorl
|
Oshll
|
Oshrl
|
Oshrlu
=>
op2
(
default
nv
)
|
Oaddlimm
_ |
Oandlimm
_ |
Oorlimm
_ |
Oxorlimm
_ |
Oshrlimm
_ |
Oshrxlimm
_=>
op1
(
default
nv
)
|
Orolml
_ _ |
Olongoffloat
|
Ofloatoflong
=>
op1
(
default
nv
)
|
Onegf
|
Oabsf
=>
op1
(
default
nv
)
|
Oaddf
|
Osubf
|
Omulf
|
Odivf
=>
op2
(
default
nv
)
|
Onegfs
|
Oabsfs
=>
op1
(
default
nv
)
|
Oaddfs
|
Osubfs
|
Omulfs
|
Odivfs
=>
op2
(
default
nv
)
|
Osingleoffloat
|
Ofloatofsingle
=>
op1
(
default
nv
)
|
Ointoffloat
=>
op1
(
default
nv
)
|
Ofloatofwords
|
Omakelong
=>
op2
(
default
nv
)
|
Olowlong
|
Ohighlong
=>
op1
(
default
nv
)
|
Ocmp
c
=>
needs_of_condition
c
|
Osel
c
ty
=>
nv
::
nv
::
needs_of_condition
c
end
.
Definition
operation_is_redundant
(
op
:
operation
) (
nv
:
nval
):
bool
:=
match
op
with
|
Ocast8signed
=>
sign_ext_redundant
8
nv
|
Ocast16signed
=>
sign_ext_redundant
16
nv
|
Oandimm
n
=>
andimm_redundant
nv
n
|
Oorimm
n
=>
orimm_redundant
nv
n
|
Orolm
amount
mask
=>
rolm_redundant
nv
amount
mask
| _ =>
false
end
.
Ltac
InvAgree
:=
match
goal
with
| [
H
:
vagree_list
nil
_ _ |- _ ] =>
inv
H
;
InvAgree
| [
H
:
vagree_list
(_::_) _ _ |- _ ] =>
inv
H
;
InvAgree
| _ =>
idtac
end
.
Ltac
TrivialExists
:=
match
goal
with
| [ |-
exists
v
,
Some
?
x
=
Some
v
/\ _ ] =>
exists
x
;
split
;
auto
| _ =>
idtac
end
.
Section
SOUNDNESS
.
Variable
ge
:
genv
.
Variable
sp
:
block
.
Variables
m
m'
:
mem
.
Hypothesis
PERM
:
forall
b
ofs
k
p
,
Mem.perm
m
b
ofs
k
p
->
Mem.perm
m'
b
ofs
k
p
.
Lemma
needs_of_condition_sound
:
forall
cond
args
b
args'
,
eval_condition
cond
args
m
=
Some
b
->
vagree_list
args
args'
(
needs_of_condition
cond
) ->
eval_condition
cond
args'
m'
=
Some
b
.
Proof.
intros
.
destruct
cond
;
simpl
in
H
;
try
(
eapply
default_needs_of_condition_sound
;
eauto
;
fail
);
simpl
in
*;
FuncInv
;
InvAgree
.
-
eapply
maskzero_sound
;
eauto
.
-
destruct
(
Val.maskzero_bool
v
i
)
as
[
b'
|]
eqn
:
MZ
;
try
discriminate
.
erewrite
maskzero_sound
;
eauto
.
Qed.
Lemma
needs_of_operation_sound
:
forall
op
args
v
nv
args'
,
eval_operation
ge
(
Vptr
sp
Ptrofs.zero
)
op
args
m
=
Some
v
->
vagree_list
args
args'
(
needs_of_operation
op
nv
) ->
nv
<>
Nothing
->
exists
v'
,
eval_operation
ge
(
Vptr
sp
Ptrofs.zero
)
op
args'
m'
=
Some
v'
/\
vagree
v
v'
nv
.
Proof.
unfold
needs_of_operation
;
intros
;
destruct
op
;
try
(
eapply
default_needs_of_operation_sound
;
eauto
;
fail
);
simpl
in
*;
FuncInv
;
InvAgree
;
TrivialExists
.
-
apply
sign_ext_sound
;
auto
.
compute
;
auto
.
-
apply
sign_ext_sound
;
auto
.
compute
;
auto
.
-
apply
add_sound
;
auto
.
-
apply
add_sound
;
auto
with
na
.
-
apply
add_sound
;
auto
with
na
.
-
apply
mul_sound
;
auto
.
-
apply
mul_sound
;
auto
with
na
.
-
apply
and_sound
;
auto
.
-
apply
andimm_sound
;
auto
.
-
apply
or_sound
;
auto
.
-
apply
orimm_sound
;
auto
.
-
apply
xor_sound
;
auto
.
-
apply
xor_sound
;
auto
with
na
.
-
apply
notint_sound
;
auto
.
-
apply
notint_sound
.
apply
and_sound
;
rewrite
bitwise_idem
;
auto
.
-
apply
notint_sound
.
apply
or_sound
;
rewrite
bitwise_idem
;
auto
.
-
apply
notint_sound
.
apply
xor_sound
;
rewrite
bitwise_idem
;
auto
.
-
apply
and_sound
;
auto
.
apply
notint_sound
;
rewrite
bitwise_idem
;
auto
.
-
apply
or_sound
;
auto
.
apply
notint_sound
;
rewrite
bitwise_idem
;
auto
.
-
apply
shrimm_sound
;
auto
.
-
apply
rolm_sound
;
auto
.
-
destruct
(
eval_condition
c
args
m
)
as
[
b
|]
eqn
:
EC
;
simpl
in
H2
.
erewrite
needs_of_condition_sound
by
eauto
.
subst
v
;
simpl
.
auto
with
na
.
subst
v
;
auto
with
na
.
-
destruct
(
eval_condition
c
args
m
)
as
[
b
|]
eqn
:
EC
.
erewrite
needs_of_condition_sound
by
eauto
.
apply
select_sound
;
auto
.
simpl
;
auto
with
na
.
Qed.
Lemma
operation_is_redundant_sound
:
forall
op
nv
arg1
args
v
arg1'
args'
,
operation_is_redundant
op
nv
=
true
->
eval_operation
ge
(
Vptr
sp
Ptrofs.zero
)
op
(
arg1
::
args
)
m
=
Some
v
->
vagree_list
(
arg1
::
args
) (
arg1'
::
args'
) (
needs_of_operation
op
nv
) ->
vagree
v
arg1'
nv
.
Proof.
intros
.
destruct
op
;
simpl
in
*;
try
discriminate
;
inv
H1
;
FuncInv
;
subst
.
-
apply
sign_ext_redundant_sound
;
auto
.
lia
.
-
apply
sign_ext_redundant_sound
;
auto
.
lia
.
-
apply
andimm_redundant_sound
;
auto
.
-
apply
orimm_redundant_sound
;
auto
.
-
apply
rolm_redundant_sound
;
auto
.
Qed.
End
SOUNDNESS
.