Module Deadcodeproof


Elimination of unneeded computations over RTL: correctness proof.

Require Import FunInd.
Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
Require Import AST Linking.
Require Import Values Memory Globalenvs Events Smallstep.
Require Import Registers Op RTL.
Require Import ValueDomain ValueAnalysis NeedDomain NeedOp Deadcode.

Definition match_prog (prog tprog: RTL.program) :=
  match_program (fun cu f tf => transf_fundef (romem_for cu) f = OK tf) eq prog tprog.

Lemma transf_program_match:
  forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog.
Proof.

Relating the memory states


The magree predicate is a variant of Mem.extends where we allow the contents of the two memory states to differ arbitrarily on some locations. The predicate P is true on the locations whose contents must be in the lessdef relation.

Definition locset := block -> Z -> Prop.

Record magree (m1 m2: mem) (P: locset) : Prop := mk_magree {
  ma_perm:
    forall b ofs k p,
    Mem.perm m1 b ofs k p -> Mem.perm m2 b ofs k p;
  ma_perm_inv:
    forall b ofs k p,
    Mem.perm m2 b ofs k p -> Mem.perm m1 b ofs k p \/ ~Mem.perm m1 b ofs Max Nonempty;
  ma_memval:
    forall b ofs,
    Mem.perm m1 b ofs Cur Readable ->
    P b ofs ->
    memval_lessdef (ZMap.get ofs (PMap.get b (Mem.mem_contents m1)))
                   (ZMap.get ofs (PMap.get b (Mem.mem_contents m2)));
  ma_nextblock:
    Mem.nextblock m2 = Mem.nextblock m1
}.

Lemma magree_monotone:
  forall m1 m2 (P Q: locset),
  magree m1 m2 P ->
  (forall b ofs, Q b ofs -> P b ofs) ->
  magree m1 m2 Q.
Proof.

Lemma mextends_agree:
  forall m1 m2 P, Mem.extends m1 m2 -> magree m1 m2 P.
Proof.

Lemma magree_extends:
  forall m1 m2 (P: locset),
  (forall b ofs, P b ofs) ->
  magree m1 m2 P -> Mem.extends m1 m2.
Proof.

Lemma magree_loadbytes:
  forall m1 m2 P b ofs n bytes,
  magree m1 m2 P ->
  Mem.loadbytes m1 b ofs n = Some bytes ->
  (forall i, ofs <= i < ofs + n -> P b i) ->
  exists bytes', Mem.loadbytes m2 b ofs n = Some bytes' /\ list_forall2 memval_lessdef bytes bytes'.
Proof.

Lemma magree_load:
  forall m1 m2 P chunk b ofs v,
  magree m1 m2 P ->
  Mem.load chunk m1 b ofs = Some v ->
  (forall i, ofs <= i < ofs + size_chunk chunk -> P b i) ->
  exists v', Mem.load chunk m2 b ofs = Some v' /\ Val.lessdef v v'.
Proof.

Lemma magree_storebytes_parallel:
  forall m1 m2 (P Q: locset) b ofs bytes1 m1' bytes2,
  magree m1 m2 P ->
  Mem.storebytes m1 b ofs bytes1 = Some m1' ->
  (forall b' i, Q b' i ->
                b' <> b \/ i < ofs \/ ofs + Z.of_nat (length bytes1) <= i ->
                P b' i) ->
  list_forall2 memval_lessdef bytes1 bytes2 ->
  exists m2', Mem.storebytes m2 b ofs bytes2 = Some m2' /\ magree m1' m2' Q.
Proof.

Lemma magree_store_parallel:
  forall m1 m2 (P Q: locset) chunk b ofs v1 m1' v2,
  magree m1 m2 P ->
  Mem.store chunk m1 b ofs v1 = Some m1' ->
  vagree v1 v2 (store_argument chunk) ->
  (forall b' i, Q b' i ->
                b' <> b \/ i < ofs \/ ofs + size_chunk chunk <= i ->
                P b' i) ->
  exists m2', Mem.store chunk m2 b ofs v2 = Some m2' /\ magree m1' m2' Q.
Proof.

Lemma magree_storebytes_left:
  forall m1 m2 P b ofs bytes1 m1',
  magree m1 m2 P ->
  Mem.storebytes m1 b ofs bytes1 = Some m1' ->
  (forall i, ofs <= i < ofs + Z.of_nat (length bytes1) -> ~(P b i)) ->
  magree m1' m2 P.
Proof.

Lemma magree_store_left:
  forall m1 m2 P chunk b ofs v1 m1',
  magree m1 m2 P ->
  Mem.store chunk m1 b ofs v1 = Some m1' ->
  (forall i, ofs <= i < ofs + size_chunk chunk -> ~(P b i)) ->
  magree m1' m2 P.
Proof.

Lemma magree_free:
  forall m1 m2 (P Q: locset) b lo hi m1',
  magree m1 m2 P ->
  Mem.free m1 b lo hi = Some m1' ->
  (forall b' i, Q b' i ->
                b' <> b \/ ~(lo <= i < hi) ->
                P b' i) ->
  exists m2', Mem.free m2 b lo hi = Some m2' /\ magree m1' m2' Q.
Proof.

Lemma magree_valid_access:
  forall m1 m2 (P: locset) chunk b ofs p,
  magree m1 m2 P ->
  Mem.valid_access m1 chunk b ofs p ->
  Mem.valid_access m2 chunk b ofs p.
Proof.

Properties of the need environment


Lemma add_need_all_eagree:
  forall e e' r ne,
  eagree e e' (add_need_all r ne) -> eagree e e' ne.
Proof.

Lemma add_need_all_lessdef:
  forall e e' r ne,
  eagree e e' (add_need_all r ne) -> Val.lessdef e#r e'#r.
Proof.

Lemma add_need_eagree:
  forall e e' r nv ne,
  eagree e e' (add_need r nv ne) -> eagree e e' ne.
Proof.

Lemma add_need_vagree:
  forall e e' r nv ne,
  eagree e e' (add_need r nv ne) -> vagree e#r e'#r nv.
Proof.

Lemma add_needs_all_eagree:
  forall rl e e' ne,
  eagree e e' (add_needs_all rl ne) -> eagree e e' ne.
Proof.

Lemma add_needs_all_lessdef:
  forall rl e e' ne,
  eagree e e' (add_needs_all rl ne) -> Val.lessdef_list e##rl e'##rl.
Proof.

Lemma add_needs_eagree:
  forall rl nvl e e' ne,
  eagree e e' (add_needs rl nvl ne) -> eagree e e' ne.
Proof.

Lemma add_needs_vagree:
  forall rl nvl e e' ne,
  eagree e e' (add_needs rl nvl ne) -> vagree_list e##rl e'##rl nvl.
Proof.

Lemma add_ros_need_eagree:
  forall e e' ros ne, eagree e e' (add_ros_need_all ros ne) -> eagree e e' ne.
Proof.

Global Hint Resolve add_need_all_eagree add_need_all_lessdef
             add_need_eagree add_need_vagree
             add_needs_all_eagree add_needs_all_lessdef
             add_needs_eagree add_needs_vagree
             add_ros_need_eagree: na.

Lemma eagree_init_regs:
  forall rl vl1 vl2 ne,
  Val.lessdef_list vl1 vl2 ->
  eagree (init_regs vl1 rl) (init_regs vl2 rl) ne.
Proof.

Basic properties of the translation


Section PRESERVATION.

Variable prog: program.
Variable tprog: program.
Hypothesis TRANSF: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_match TRANSF).

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof (Genv.senv_match TRANSF).

Lemma functions_translated:
  forall (v: val) (f: RTL.fundef),
  Genv.find_funct ge v = Some f ->
  exists cu tf,
  Genv.find_funct tge v = Some tf /\ transf_fundef (romem_for cu) f = OK tf /\ linkorder cu prog.
Proof (Genv.find_funct_match TRANSF).

Lemma function_ptr_translated:
  forall (b: block) (f: RTL.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  exists cu tf,
  Genv.find_funct_ptr tge b = Some tf /\ transf_fundef (romem_for cu) f = OK tf /\ linkorder cu prog.
Proof (Genv.find_funct_ptr_match TRANSF).

Lemma sig_function_translated:
  forall rm f tf,
  transf_fundef rm f = OK tf ->
  funsig tf = funsig f.
Proof.

Lemma stacksize_translated:
  forall rm f tf,
  transf_function rm f = OK tf -> tf.(fn_stacksize) = f.(fn_stacksize).
Proof.

Definition vanalyze (cu: program) (f: function) :=
  ValueAnalysis.analyze (romem_for cu) f.

Lemma transf_function_at:
  forall cu f tf an pc instr,
  transf_function (romem_for cu) f = OK tf ->
  analyze (vanalyze cu f) f = Some an ->
  f.(fn_code)!pc = Some instr ->
  tf.(fn_code)!pc = Some(transf_instr (vanalyze cu f) an pc instr).
Proof.

Lemma is_dead_sound_1:
  forall nv, is_dead nv = true -> nv = Nothing.
Proof.

Lemma is_dead_sound_2:
  forall nv, is_dead nv = false -> nv <> Nothing.
Proof.

Hint Resolve is_dead_sound_1 is_dead_sound_2: na.

Lemma is_int_zero_sound:
  forall nv, is_int_zero nv = true -> nv = I Int.zero.
Proof.

Lemma find_function_translated:
  forall ros rs fd trs ne,
  find_function ge ros rs = Some fd ->
  eagree rs trs (add_ros_need_all ros ne) ->
  exists cu tfd,
     find_function tge ros trs = Some tfd
  /\ transf_fundef (romem_for cu) fd = OK tfd
  /\ linkorder cu prog.
Proof.

Semantic invariant


Inductive match_stackframes: stackframe -> stackframe -> Prop :=
  | match_stackframes_intro:
      forall res f sp pc e tf te cu an
        (LINK: linkorder cu prog)
        (FUN: transf_function (romem_for cu) f = OK tf)
        (ANL: analyze (vanalyze cu f) f = Some an)
        (RES: forall v tv,
              Val.lessdef v tv ->
              eagree (e#res <- v) (te#res<- tv)
                     (fst (transfer f (vanalyze cu f) pc an!!pc))),
      match_stackframes (Stackframe res f (Vptr sp Ptrofs.zero) pc e)
                        (Stackframe res tf (Vptr sp Ptrofs.zero) pc te).

Inductive match_states: state -> state -> Prop :=
  | match_regular_states:
      forall s f sp pc e m ts tf te tm cu an
        (STACKS: list_forall2 match_stackframes s ts)
        (LINK: linkorder cu prog)
        (FUN: transf_function (romem_for cu) f = OK tf)
        (ANL: analyze (vanalyze cu f) f = Some an)
        (ENV: eagree e te (fst (transfer f (vanalyze cu f) pc an!!pc)))
        (MEM: magree m tm (nlive ge sp (snd (transfer f (vanalyze cu f) pc an!!pc)))),
      match_states (State s f (Vptr sp Ptrofs.zero) pc e m)
                   (State ts tf (Vptr sp Ptrofs.zero) pc te tm)
  | match_call_states:
      forall s f args m ts tf targs tm cu
        (STACKS: list_forall2 match_stackframes s ts)
        (LINK: linkorder cu prog)
        (FUN: transf_fundef (romem_for cu) f = OK tf)
        (ARGS: Val.lessdef_list args targs)
        (MEM: Mem.extends m tm),
      match_states (Callstate s f args m)
                   (Callstate ts tf targs tm)
  | match_return_states:
      forall s v m ts tv tm
        (STACKS: list_forall2 match_stackframes s ts)
        (RES: Val.lessdef v tv)
        (MEM: Mem.extends m tm),
      match_states (Returnstate s v m)
                   (Returnstate ts tv tm).

match_states and CFG successors

Lemma analyze_successors:
  forall cu f an pc instr pc',
  analyze (vanalyze cu f) f = Some an ->
  f.(fn_code)!pc = Some instr ->
  In pc' (successors_instr instr) ->
  NA.ge an!!pc (transfer f (vanalyze cu f) pc' an!!pc').
Proof.

Lemma match_succ_states:
  forall s f sp pc e m ts tf te tm an pc' cu instr ne nm
    (LINK: linkorder cu prog)
    (STACKS: list_forall2 match_stackframes s ts)
    (FUN: transf_function (romem_for cu) f = OK tf)
    (ANL: analyze (vanalyze cu f) f = Some an)
    (INSTR: f.(fn_code)!pc = Some instr)
    (SUCC: In pc' (successors_instr instr))
    (ANPC: an!!pc = (ne, nm))
    (ENV: eagree e te ne)
    (MEM: magree m tm (nlive ge sp nm)),
  match_states (State s f (Vptr sp Ptrofs.zero) pc' e m)
               (State ts tf (Vptr sp Ptrofs.zero) pc' te tm).
Proof.

Builtin arguments and results

Lemma eagree_set_res:
  forall e1 e2 v1 v2 res ne,
  Val.lessdef v1 v2 ->
  eagree e1 e2 (kill_builtin_res res ne) ->
  eagree (regmap_setres res v1 e1) (regmap_setres res v2 e2) ne.
Proof.

Lemma transfer_builtin_arg_sound:
  forall bc e e' sp m m' a v,
  eval_builtin_arg ge (fun r => e#r) (Vptr sp Ptrofs.zero) m a v ->
  forall nv ne1 nm1 ne2 nm2,
  transfer_builtin_arg nv (ne1, nm1) a = (ne2, nm2) ->
  eagree e e' ne2 ->
  magree m m' (nlive ge sp nm2) ->
  genv_match bc ge ->
  bc sp = BCstack ->
  exists v',
     eval_builtin_arg ge (fun r => e'#r) (Vptr sp Ptrofs.zero) m' a v'
  /\ vagree v v' nv
  /\ eagree e e' ne1
  /\ magree m m' (nlive ge sp nm1).
Proof.

Lemma transfer_builtin_args_sound:
  forall e sp m e' m' bc al vl,
  eval_builtin_args ge (fun r => e#r) (Vptr sp Ptrofs.zero) m al vl ->
  forall ne1 nm1 ne2 nm2,
  transfer_builtin_args (ne1, nm1) al = (ne2, nm2) ->
  eagree e e' ne2 ->
  magree m m' (nlive ge sp nm2) ->
  genv_match bc ge ->
  bc sp = BCstack ->
  exists vl',
     eval_builtin_args ge (fun r => e'#r) (Vptr sp Ptrofs.zero) m' al vl'
  /\ Val.lessdef_list vl vl'
  /\ eagree e e' ne1
  /\ magree m m' (nlive ge sp nm1).
Proof.

Lemma can_eval_builtin_arg:
  forall sp e m e' m' P,
  magree m m' P ->
  forall a v,
  eval_builtin_arg ge (fun r => e#r) (Vptr sp Ptrofs.zero) m a v ->
  exists v', eval_builtin_arg tge (fun r => e'#r) (Vptr sp Ptrofs.zero) m' a v'.
Proof.

Lemma can_eval_builtin_args:
  forall sp e m e' m' P,
  magree m m' P ->
  forall al vl,
  eval_builtin_args ge (fun r => e#r) (Vptr sp Ptrofs.zero) m al vl ->
  exists vl', eval_builtin_args tge (fun r => e'#r) (Vptr sp Ptrofs.zero) m' al vl'.
Proof.

Properties of volatile memory accesses

Lemma transf_volatile_store:
  forall v1 v2 v1' v2' m tm chunk sp nm t v m',
  volatile_store_sem chunk ge (v1::v2::nil) m t v m' ->
  Val.lessdef v1 v1' ->
  vagree v2 v2' (store_argument chunk) ->
  magree m tm (nlive ge sp nm) ->
  v = Vundef /\
  exists tm', volatile_store_sem chunk ge (v1'::v2'::nil) tm t Vundef tm'
           /\ magree m' tm' (nlive ge sp nm).
Proof.

Lemma eagree_set_undef:
  forall e1 e2 ne r, eagree e1 e2 ne -> eagree (e1#r <- Vundef) e2 ne.
Proof.

The simulation diagram


Theorem step_simulation:
  forall S1 t S2, step ge S1 t S2 ->
  forall S1', match_states S1 S1' -> sound_state prog S1 ->
  exists S2', step tge S1' t S2' /\ match_states S2 S2'.
Proof.

Lemma transf_initial_states:
  forall st1, initial_state prog st1 ->
  exists st2, initial_state tprog st2 /\ match_states st1 st2.
Proof.

Lemma transf_final_states:
  forall st1 st2 r,
  match_states st1 st2 -> final_state st1 r -> final_state st2 r.
Proof.

Semantic preservation


Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
Proof.

End PRESERVATION.